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Robust fundamental frequency detection and estimation of 
a speech signal has remained an elusive goal in speech pro- 
cessing; yet, there will always be a need for reliable detection 
and estimation of this important speech feature in adverse envi- 
ronments. Heuristic approaches to the problem have been op- 
timized for specific environments [ l ,  21; but such approaches 
cannot, in general, be applied to other environments where vari- 
ations in channel conditions, background noise, and transduc- 
tion processes abound. 

In this paper, we extend some of the work previously re- 
ported [3,4] on a greatly enhanced cepstral based pitch detector 
and estimator which employs the MUSIC [5] algorithm. We 
demonstrate the ability of subspace processing [6,7] to not only 
perform excellent pitch estimation, as judged by objective per- 
formance evaluations, but also to perform good classification of 
voiced/unvoiced speech signals. Furthermore, our techniques 
have shown marked smdes of improvement in estimation at 
very low signal-to-noise ratios [4]. 

1. Introduction and Background 

The FFT based cepstral method, since its inception [8], 
has been considered to be an accurate and reliable method 
for determining fundamental frequency of a speech signal, 
provided that the signal was produced in a clean environment 
(typically referred to as studio quality data). Two drawbacks to 
this historical technique are that it leaves the detection problem 
unanswered and it does not handle additive noise. 

The classical cepstrum can be succintly described as an 
:FT-log-FFT operation. In [3], we introduced an FFT-log- 
UUSIC based cepstral algorithm for estimating pitch in a 
ipeech signal. MUSIC [5] is a high resolution spectral esti- 
nator. The Texas Instruments Long Distance Telephone Pitch 
letection database of [l] was used to evaluate the performance. 
?de showed significant improvement in estimation performance 
Iver standard FFT-log-FFT based processing [8] given that we 
mew a priori that the speech signal was voiced. This a pri- 
xi knowledge came to us from the hand edited reference pitch 
racks of [l] which were edited in such a way so as to optimize 
;ynthetic speech quality. We found, that when tested against 
iuch objective measures, our method had a 3.11% pitch esti- 
nation error compared against a 26.14% estimation error for 
he classical FFT based method. We have reached as low an 
stimation error as 2.69% in further studies using the FFT-log- 
vIUSIC technique introduced in [ 3 ] .  

Our first attempt at placing the FFT-log-MUSIC estimator 
in [3] in an operational environment is reported in [4j. There 
we show that at low signal-to-noise ratios, OUT estimation per- 
formance is significantly better than all other known methods 
in the literature. One of the problems that we encountered 
in moving this improved MUSIC based cepstral estimator to 
an operational environment was the lack of a voicing decision 
mechanism, other than the use of the dynamic programming 
based tracking of [I]. So-called high resolution frequency es- 
timators of the MUSIC class suffer from poor amplitude esti- 
mation abilities and hence we arrived at poor classification of 
voicedunvoiced speech signals. 

In this paper, we show some improvements to our previ- 
ously reported techniques by using a MUSIC-log-MUSIC op- 
eration to attain a superresolution cepstrwn. Since we rely on 
the singular value decomposition (SVD) of a data mamx to 
get our spectral and cepstral estimates, we can use the singular 
values to make preliminary voicing decisions. It turns out, that 
from our experimentation, various tests involving the singular 
values provide varying degrees of discrimination between the 
voiced and unvoiced speech data. We also mention here that 
there still remain some difficulties with the SVD tests in tran- 
sitional speech data - speech which is moving in to and out 
of voiced regions and in to and out of unvoiced regions. We 
will detail OUT results with appropriate explanations following 
a brief review of cepstral methods for pitch analysis. 

2. Classical and Modern Cepstral Methods 
for Pitch Analysis 

Classical cepstral methods rely on the simplified z-domain 
description of a speech signal, assumed to be a model of the 
form: 

S ( z )  = H ( z ) P ( z )  (1) 
where H ( z )  is the z-transform of the vocal tract response 
sequence and P ( z )  is the a-transform of the glottal excitation 
(or pitch sequence). More detailed analytical expressions, based 
on some simplifying assumptions of Eq. 1, may be found in 
[S, 91. What is important is that P ( z )  takes on the form of a 
periodic, or quasi-periodic, pseudo-pulse train when the speech 
signal is voiced. When the speech signal is unvoiced, P ( z )  
can be assumed to take on the guise of the z-transform of a 
white noise sequence. 

In cepstral processing, it is desired to separate P ( z )  from 
H ( z )  in EQ. 1 by converting the multiplicative relationship into 
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an additive one. This can be accomplished with the complex 
log operator, i.e., log [ H ( z ) P ( z ) ]  = log [ H ( z ) ]  + log [ P ( z ) ] .  
This operation, however, presents a problem (from an algebraic 
standpoint) when there is an additive component to Eq. 1, such 
that in the z-domain, we obtain: 

In [3] we first introduced a discretized vector form of Eq. 2, 
which exposes once again the desired signal component that we 
seek. This expression is repeated again below for convenience: 

where 

2 = Z +  log [1+ D-'n] (3) 

It is the presence of the noise term (Eq. 5 )  in Eq.3 that 
produces undesirable behavior in the cepst". As explained 
in [3],  at low SNR (< 10 dB), the entire second term in Eq. 3 
turns out to be approximately white. It is under this case that the 
MUSIC algorithm performs its best where cepstral processing 
is concerned. As indicated in [4], it is also under this case that 
the MUSIC based cepstral algorithm performs better than all 
others where the pitch estimation problem is concerned. 

3. MUSIC Based Cepstral Processing - The 
Superresolution Cepstrum 

In [ 3 ] ,  we described a family of possible algorithms that 
could be used to obtain high resolution cepstral estimates. 
In an attempt to improve our estimation performance of the 
pitch harmonic, we now apply a MUSIC-log-MUSIC approach 
as another algorithm in this class. We obtained significant 
reductions in pitch estimation error over standard €33-log-FFT 
methods and over our FR-log-MUSIC method. 

The double MUSIC algorithm consists of a MUSIC front 
end, a log operation and a MUSIC back end, which produces 
a superresolution cepst"  (MUSIC is used in place of both 
FFTs). The first step is to form a Toeplitz data mamx from 
the N data points, 

.(P) 5 ( P  - 1) . . .  z(1) 
z ( P +  1) .(P) " '  4 2 )  

e (N-1 )  z ( N - 2 )  ' . .  z ( N - P )  

X =  

(N -P)  X P 
(7) 
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for which the singular value decomposition (SVD) is 

x = UCVt (8) 
The size of the data matrix is determined by P 5 N - P which 
is chosen to optimize performance over the T.I. database. If we 
stay with compact notation (introduced in [lo]) used to describe 
the MUSIC spectrum, we have the following results: 

where 

and U, is the i th  singular vector of the data matrix X = UCV'. 
This technique essentially uses the estimated noise subspace, 
given by {U,+,  , U Q + ~ ,  . . . , U N - P }  to obtain a high resolution 
spectral estimate. Next we form the log of Eq. 9, as 

A 

Q M l i S ( W )  = 1% [ ~ M U S ( W ) l .  (11) 

Now if we appropriately discretize Eq. 11 and use the 
data to form the log-spectral covariance matrix, we obtain the 
Toeplitz structure 

from which we take the singular value decomposition of Eq. 
12 as --- 

T = UZVt (13) 

then we can form our new superresolution cepstral estimation 
function as 

i=q+1  

where 

Most of the time, the simple choice of the maximum in the 
function expressed in Eq. 14 will yield an excellent estimate 
of the pitch, given that the frame of speech data over which 
this function is applied is clearly voiced. The only problem 
with this is that by the time we have applied the MUSIC 
algorithm twice over the data matrix, with a log operation in 
between, the amplitude information is virtually lost. There is 
little hope of obtaining a normalized version of this function 
which is representative of the true energy (or partial energy) 
in the original data. This poses no problem, however, if we 
consider that the energy information that we desire for such 
a detection problem as this is contained in the squares of the 
singular values of the first decomposition. 



4. Singular Value Based Pitch Detection 
The square of the singular values from the first SVD (eq. 

8) provide us with an energy measure of the data that leads to 
a general discriminant for voicing decisions: 

m=k 

where T is some chosen threshold which when exceeded by the 
ratio will cause a choice to be made in favor of a voiced speech 
frame and i , j  are chosen to correspond to the “signal” subspace 
and I C ,  1 are chosen to correspond to the “noise” subspace. We 
may view the ratio as an attempted classification of independent 
distributions for voiced and unvoiced speech. This implies that 
in the case of narrowband signals (or their equivalent) in the 
presence of broadband noise, the ratio S;,/Skl will tend to be 
larger than in the case of just background noise. 

A variant of the above ratio test which we have experi- 
mented with involves setting of the denominator in the ratio 
of Eq. 16 to unity and i = j = 1. This action happens to 
be the equivalent of taking the two-norm squared of the data 
covariance matrix, expressed as 

is concerned, comes from the MUSIC-log-MUSIC method. We 
see that there are few choices as far as picking out a pitch peak 
is concerned. The pitch estimation error for the entire database 
is on the order of I% of an detected voiced frames. 

We now tum our attention to the detection problem. Our 
previous performance as reported in [4], was based on the am- 
plitude output by the MUSIC function. The a posteriori distr- 
butions of the MUSIC amplitude function for this database is 
given in Figure 5. We observe that reliance on the MUSIC am- 
plitude function Ranslates to very poor separability in the dis- 
mbutions. Since we have implemented a two pass MUSIC ap- 
proach for determining the cepstrum, as mentioned previously, 
we can use the information provided by the singular values of 
the first pass (indicating signals present or absent in the power 
spectrum) to assist our voicing decision problem. We already 
have the use of a dynamic programming based tracking algo- 
rithm helping us make decisions based somewhat on the am- 
plitude of the pitch peak and the consistency in frequency with 
which it occurs. Mainly due to the inconsistency of MUSIC 
amplitude, we rely more on the consistency of the frequency 
estimate. Now since our singular values tell us something about 
voicing, we use this knowledge to input a zero-cepstrum to the 
dynamic tracking algorithm. This action assures the clearly 
unvoiced frames will not even enter into the decision mak- 
ing process. In Figures 6-8, we show progressively improved 
speech data in terms of SNR. We show that at low SNR, separa- 
bility based on eigenvalues becomes more difficult, as expected. 
Observation of Figures 7 and 8 show that as we increase SNR, 

such that for a voiced speech data frame, we have 

Our preliminary investigations indicate that eq. 18 can 
be used to reduce the possibility of choosing an unvoiced 
frame as voiced by nearly SO% and this is considered good 
discrimination by many speech reasearchers. There are other 
suboptimal methods available, all based on Eq. 16 and each 
has its specific meaning as far as signal model is concerned. In 
the case of Eq. 18, we are looking at rank one energy. We have 
also found good success with the choice of a 10 dimensional 
signal” subspace test, where i = 1 , j  = 1 0 , k  = 1,l = P ,  

and P is the minimum dimension of the data matrix. This 
test is tantamount to a normalized energy ratio of the energy 
in the “signal” subspace (with at most 10/2 = 5 narrowband 
processes) and the total energy in the frame. 

5. Results of Simulations and Evaluations 
on an Operational Database 

Figure 1, in conjunction with Table 1, summarizes appro- 
priate statistics of the Texas Instruments Long Distance Pitch 
Detection database [l] used to test the MUSIC based cepstral 
pitch algorithm. First we tum to the estimation problem and 
observe some typical results. Figures 2, 3 and 4 taken to- 
gether reveal our progress in the area of cepstral estimation. 
We can view classical FFT based methods from Figure 2. We 
note that very poor estimation performance is clear by observa- 
tion. Peaks which remotely resemble pitch locations are biased 
and inconsistent (an historical problem with FFT-log-FFT pro- 
cessing). We see from Figure 3 a significant improvement in 
both peak location and consistency, when we use the FFT-log- 
MUSIC approach. Our best achievement, as far as estimation 

1‘ . 

we improve our separability. In these figures, we have shown 
a surface plot of the 120 singular values, obtained from the 
SVD of the Toeplitz data matrix (Eq. 8), against consecutive 
voiced frames and then consecutive unvoiced frames, conca- 
tentated on to the same surface for ease of comparison. One of 
the big problems with high resolution spectral estimation (and 
hence also with superresolution cepstral estimation) is spuri- 
ous peaks allowed in the cepstrum through inexact modeling. 
Utilizing knowledge of whether or not the cepstrum should 
even have a peak (representing pitch) before computing it is 
useful for improving the modeling process. Empirically de- 
rived distributions of the log of the eigenvalues for the case 
of the Texas Instruments Long Distance Telephone Pitch De- 
tection Database are shown in Figure 9. We took the log to 
limit the range in the distributions for visual display purposes. 
The classical detection problem is apparent by inspection of the 
distributions. In the case of our algorithms, and in considera- 
tion of the overall pitch tracking system, we choose to favor the 
voicing distribution such that we end up eliminating about SO% 
of all unvoiced frames from consideration. The other SO% of 
all unvoiced frames includes all transitional frames (in to and. 
out from voiced segments) and channel dominated frames (in 
which a colored noise may be present), both of which will likely 
contain sufficiently high variances to favor a positive voicing 
decision to be hypothesized. 

For this database, an optimal T was discovered at 
2 . 0 9 8 2 ~ 1 0 ~ .  We applied the two pass MUSIC with this T and 
have obtained a cumulative performance of 6.96%. This com- 
pares favorable to current state of the art, Texas Insmments 
integrated correlator [l], which had a cumulative performance 
of 3.82%. 
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6. Concluding Remarks 

We have employed the use of the superresolution cepstrum 
in order to achieve the goals of state-of-the-art in pitch detection 
and estimation. The current positioning of this method with 
other methods sturlled in the literature [ l ]  can be viewed from 
Figure 10. In terms of error from synthetic speech quality 
optimizations, this Figure shows the relative performance in 
comparison with other popular pitch detection and estimation 
algorithms. Although we have not achieved state-of-the-art 
using the superresolution cepstral techniques described herein, 
we recognize that it is certainly approachable and probably 
within grasp of these methods. 

Our plans for continued investigation of these techniques 
applied to the problem of pitch detection and estimation include 
a rigorous statistical analysis of the algorithm, application of 
minimum norm solutions to the problem, least squares ampli- 
tude estimation, and further study into the optimal choices of 
i , j ,  k, I ,  and T of Q. 16. These appear to be go& topics for 
further investigations into what we have presented here. 
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Table 3: Characteristics of Texas Instruments Long 
Distance Telephone Pitch Detection Database 

To& A d d t  M d e  Utterancm. 
To& A d d t  Femde Utterances 
Percent of Pitch Frequenuff Under 150 Hz 
Percenr of Pitch Frequenoes Under 250 Hr:  1 Percenr of Pluh Frequenaes Under 350 H L  
Percent of p l td  Frequenaes Over 350 iG 

62 Yr 
39 % 
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Fiyre 4' MUSIC-MUSIC Cepsoa for Speech File with S N R  = 9.5 dB 
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Figure 8: Singular Valuej of Speech Data with SNK = 30 7 dB 

Figuie 9: Dismbutions of Log of First Eigenvalue Tor Database 

Log of Largest Eigenvalue 

Figure 10 Performance Comparison w t h  Leading ~ . l ~ o r ~ t I i r r ~ s  
~ o - a l i i d  Amoliiude of MUSIC FreQuCnCY Estimate 

Figure 6 :  Singular Valucs of Speech Data with SNR = 5.7 dB 

Figure 7 Singular Values of Speech Data with SNR = 18 2 dB 
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