While converting between different language model grammar formats is, in theory, trivial, the implementation of a system that can convert a language model in an arbitrary format to another format is quite complex. The root of the complexity lies in the fact that different formats use different underlying grammar representations and the conversion of one format to another may require multiple graph transformations and manipulations. Most industry standard grammar specifications, such as JSGF and SRGS (XML), cannot be directly converted into a finite state machine representation to be used for speech recognition purposes. In order to convert to a finite state machine, we must convert the high-level grammar to the lowest level of the Chomsky hierarchy. We represent this form using normalized BNF which consists of the following rule types:
A → aB

A → B

A → ε

Where ‘A’ and ‘B’ are non-terminal symbols, ‘a’ is a terminal symbol, and ‘ε’ is the epsilon symbol. From this lowest-level representation, the conversion to a finite state machine representation is relatively straightforward. It is also easy to directly convert to a high-level grammar representation.
Our implementation of this grammar conversion system is unique in that the developer has easy-access to all of the intermediate representations. For example, to convert from XML to a finite-state machine (IHD), the conversion sequence would be:

XML→ABNF→BNF→IHD

Our system allows the developer to choose whether the intermediate representations are hidden from the user or accessible by the user.
Why would the user want to access the intermediate representations? First, the user might want to use the intermediate stages for verification purposes. For example, consider a complex XML grammar. After converting from XML to IHD, the resulting IHD does not represent what the user thought the XML grammar should describe. This would most likely mean that the XML grammar is incorrect, but tracing the problem by looking at the XML grammar directly could be complicated. By backtracking the intermediate representations, the user is able to find the problem at the grammar’s lowest level representation (BNF), and then in the higher level representation (ABNF), and finally, narrow the search for the problem in the original XML grammar.

A user/developer may also want to use the intermediate representations for development purposes. As the number of industry standard speech recognition grammar formats grows, they will need to be incorporated into our system. Giving the developer direct access to the intermediate representations also allows easy verification between conversions.

ABNF→BNF Conversion
The purpose of this algorithm is to convert a set of production rules in the high-level ABNF representation to the lowest-level normalized BNF representation. This is accomplished by recursively processing the ABNF rules one at a time, and extracting the equivalent BNF rules based on sets of terminal symbols to the left and right of an operator.
· Iterate over ABNF Production Rules
· Iterate over tokens for this rule

· Check for concatenation and Kleene (plus, star) operators.
· Recursively extract a set of terminal symbols to the left of the operator
· Recursively extract a set of terminal symbols to the right of this operator

· Construct a set of normalized BNF rules for this operator based on the right and left terminal symbols

The two recursive parts of this algorithm are the methods that find the terminal symbols to the left and right of an operator. These methods must consider the relative nesting level of the operators, as well as nested alternation. The non-terminal symbol is encountered to the right or left of an operator, the algorithm must recursivley process the production rule corresponding to this non-terminal.

