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Abstract— The interpretation of electroencephalograms (EEGs) 
is a process that is still dependent on the subjective analysis of the 
examiners. Though interrater agreement on critical events such as 
seizures is high, it is much lower on subtler events (e.g., when there 
are benign variants). The process used by an expert to interpret 
an EEG is quite subjective and hard to replicate by machine. The 
performance of machine learning technology is far from human 
performance. We have been developing an interpretation system, 
AutoEEG, with a goal of exceeding human performance on this 
task. In this work, we are focusing on one of the early decisions 
made in this process – whether an EEG is normal or abnormal. 
We explore two baseline classification algorithms: k-Nearest 
Neighbor (kNN) and Random Forest Ensemble Learning (RF). A 
subset of the TUH EEG Corpus was used to evaluate 
performance. Principal Components Analysis (PCA) was used to 
reduce the dimensionality of the data.  kNN achieved a 41.8% 
detection error rate while RF achieved an error rate of 31.7%. 
These error rates are significantly lower than those obtained by 
random guessing based on priors (49.5%). The majority of the 
errors were related to misclassification of normal EEGs. 

I. INTRODUCTION 
Electroencephalography (EEG), or the recording of the 
electrical activity of the brain, has become a relatively 
inexpensive and practical way to demonstrate the physiological 
manifestations related to conditions such as epilepsy, seizures, 
sleep disorders and several types of mental status alterations [1]. 
While the equipment for acquiring EEG data is relatively 
inexpensive and easy to use, it takes several years of training for 
a physician to achieve board certification for reading and 
reporting EEG studies. Many smaller hospitals and emergency 
medical services may not have a trained neurologist on site. 
Even larger facilities find it impractical to have certified staff 
on-site 24/7 for EEG monitoring. Furthermore, longer-term 
monitoring studies (LTMs) of neurological activity are 
becoming increasingly important. Each long-term or continuous 
EEG monitoring study requires a neurologist to review up to 72 
hours worth of data, creating a bottleneck for accurate analysis. 

The interpretation of an EEG depends heavily on the subjective 
judgment of the examiner, a situation that could lead to 
misdiagnosis or missed events in the record [2]. Maintaining an 
acceptable level of interrater agreement plays a key role in the 
assessment of the validity of this diagnostic technique.  This 
affirmation is reinforced by the sensitivity levels of the EEG for 
the diagnosis of conditions such as epilepsy. Essentially, only 
50% of the patients with epilepsy show interictal epileptiform 
discharges (IED) in their first EEG, a number that is reduced in 
significance by the fact that at least 30% of non-epileptic 
patients with other conditions or injuries show this behavior in 
their recordings [3]. Hence, a majority of the patients that 

present symptoms that could be related to an epileptic disorder 
must be subject to more than one EEG prior to a diagnosis. 

In this sense, the automated classification of an EEG record as 
normal or abnormal represents a significant step for the 
reduction of the visual bias intrinsic to the subjectivity of the 
record’s interpretation. Additionally, the assisted interpretation 
of the background patterns existing in the signal could help save 
neurologists time in their daily routine, easing some of the 
service pressures that arise from increasing demand [3]. 

The main characteristics of an adult normal EEG are [4]: 

(1) Reactivity: Response to certain physiological changes or 
provocations.  

(2) Alpha Rhythm: Waves originated in the occipital lobe 
(predominantly), between 8-13 Hz and 15 to 45 µV. 

(3) Mu Rhythm: Central rhythm of alpha activity commonly 
between 8-10 Hz visible in 17% to 19% of adults.  

(4) Beta Activity: Activities in the frequency bands of 18-25 Hz, 
14-16 Hz and 35-40 Hz. 

(5) Theta Activity: Traces of 5-7 Hz activity present in the frontal 
or frontocentral regions of the brain. 

Neurologists follow procedures similar to the one summarized 
in Figure 1 and can usually make this determination by 
examining the first few minutes of a recording. Hence, in this 
baseline study, we will focus on examining the first 60 secs of 
an EEG to calibrate the difficulty of the task. 

The visual analysis of an EEG begins with the observation of 
the occipital alpha rhythm. A decision about the normality of 
the record heavily depends on the frequency, presence or 
distortion of this feature [4]. In this sense, the posterior 
dominant rhythm (PDR) or alpha rhythm that emerges in the 
posterior regions when the patient’s eyes are closed is the main 

	
Figure 1. The general process for identifying an abnormal EEG 
depends heavily on the observation of the PDR. 



decisive feature and suggests that detection of this event in an 
occipital channel of a normal EEG can play a major role in 
normal/abnormal classification. 

An EEG can be considered abnormal for a number of reasons. 
The most obvious reason, of course, would be the existence of 
clearly pathological events such as long periods of spike and 
wave activity, Periodic Lateralized Epileptiform discharges 
(PLEDs), or Generalized Periodic Epileptiform discharges 
(GPEDs). The presence of spikes, however, does not guarantee 
an abnormal EEG. A benign variant is defined as an EEG 
pattern that is morphologically epileptiform but is not associated 
with a disease such as epilepsy [3]. Spikes presented in the form 
of small sharp spikes are considered a benign variant. 

II. EXPERIMENTAL DESIGN 
In this study we have focused on the TUH EEG Corpus [5] for 
evaluation. TUH EEG is the world’s largest publicly available 
database of clinical EEG data, comprising more than 28,000 
EEG records and over 15,000 patients. It represents the 
collective output from Temple University Hospital’s 
Department of Neurology since 2002 and is an ongoing data 
collection project. Approximately 75% of the data represent 
abnormal EEGs. We selected a demographically balanced 
subset of the data through manual review that consisted of 202 
normal EEGs and 200 abnormal EEGs. These sets were further 
partitioned into a training set (102 normal/100 abnormal), 
development test set (50 normal/50 abnormal) and an evaluation 
set (50 normal/50 abnormal).  

To create an appropriate experimental paradigm, only one EEG 
channel was selected for consideration. Examination of manual 
interpretation techniques practiced by experts revealed that the 
most promising channel to explore was the differential 
measurement T5-O1, which is part of the popular TCP 
montage [6]. This channel represents the difference between 
two electrodes located in the left temporal and occipital lobes. 
The spatial representation of this channel for a TCP montage is 
highlighted in Figure 2.   

The first 60 seconds of each recording were used to extract 
signal features. The features were extracted through a standard 
cepstral coefficient-based approach that resembles the Mel 
Frequency Cepstral Coefficients (MFCCs) utilized in speech 
recognition [7]. Eight cepstral coefficients are used. These 
features were augmented with a differential energy term that 
accentuates the difference between quasi-periodic signals such 

as periodic lateralized epileptiform discharges (PLED) and 
background noise, bringing the dimension of the absolute 
feature vector to 9. First and second derivatives are added to the 
feature vector, bringing the total dimension to 27. 

A frame duration of 0.1 secs was used in the feature extraction 
process. The feature vectors from the first 60 secs of data were 
concatenated into a supervector of dimension 600x27=16,200. 
The dimensionality of the supervector was reduced using class-
dependent Principal Components Analysis (PCA) in which we 
retained the N most significant eigenvectors of the covariance 
matrix [8] for each class. 

Two standard algorithms were explored: k-Nearest 
Neighbor (kNN) [9] and Random Forest Ensemble Learning 
(RF) [10]. For kNN, class assignments were made by 
considering a majority vote of the k nearest neighbors. A class-
specific Mahalanobis distance [9] was used in the analysis. 

The specific RF algorithm used was based on a MATLAB 
implementation [11] of the algorithms described in [10]. An 
ensemble of trees	 T# $

% was formed which produce an output 
classification given by: 

𝐶'() 	 𝑥 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦	𝑣𝑜𝑡𝑒	 𝐶6 𝑥 $
)	 (1) 

In essence, a class prediction C# x  for the bth tree is produced, 
and the final classification decision C9:% 	 x 	is made in 
accordance to the majority of the classification results yielded 
by the ensemble of trees.  

III. EXPERIMENTAL RESULTS  
The first parameter that needed to be tuned was the number of 
dimensions used for the PCA analysis. The original feature 
vector dimension of 1620 is obviously too large for our small 
dataset. There are several more sophisticated strategies that can 
be used to reduce its dimensionality including segmental 
averaging and a kernel-based rotation [12]. In this study we used 
a straightforward reduction in which we rank order the 
eigenvalues and discard the least significant eigenvectors [8].  

Figure 3 demonstrates the performance of the RF algorithm as a 
function of the number of trees, Nt. It can be seen that 
performance does not improve significantly for Nt > 20. We 
selected Nt = 50 as a compromise between performance, 
complexity and computation time.  

 
Figure 2. Emergence of the posterior dominant rythym (PDR) when 
the subject’s eyes are closed. The spatial location of the channels 
used for classification, T5 and O1, are highlighted in the diagram. 
	

	
Figure 3. RF performance as a function of number of trees, Nt, is 
shown. Performance saturates for Nt > 20. 



In Figure 4 we explore optimization of the number of output 
dimensions used in PCA for two algorithms: kNN with k = 1 
and RF with Nt = 50. These plots are generated using a forced-
choice paradigm in which one of the two classes is always 
chosen (rejecting both hypotheses is not an option). Both RF and 
kNN demonstrate that a PCA dimension of approximately 20 is 
adequate to obtain good performance. The first eigenvalue 
explains 99% of the variance, which is an indication that the 
features lack discriminating power. 

Next, we evaluated performance as a function of the number of 
nearest neighbors in the kNN algorithm the PCA dimensions of 
20 and 86. The results are shown in Figure 5. The performance 
of the system is best when k is in the range of 20 to 60. The data 
set is relatively small so we observe some amount of saturation 
in performance. We selected k = 20 for our operating point. 
Performance does not improve significantly beyond this value, 
and minimizing k reduces the computational requirements. 

With these basic parameters now optimized, we explored which 
channel should be used for the analysis. The error rate as a 
function of the PCA dimension was studied for a value of k = 20 
for a posterior temporal to occipital EEG channel (T5-O1) and 
a right frontal to central channel (F4-C4). Figure 6 presents 
these results. The T5-O1 channel is consistently better than F4-

C4, which supports the clinical use of this differential channel.  

Based on these results, we conducted additional searches for an 
optimal set of parameters for each system. In Table 1, we 
compare performance of two optimized systems to a baseline. 
The first system is random guessing based on priors. The second 
system is kNN with k = 20 and a PCA dimension of 86. The 
third system is RF with 𝑁< = 50 and a PCA dimension of 86. In 
Table 2, we show a confusion matrix for the kNN system (the 
confusion matrix for RF is similar). 

It is important to highlight the fact that for the tuning of each 
parameter, the operating point with the best performance was 
selected. In the cases where the performance of two or more 
different operating points was comparable, the point with better 
performance and less computational time was selected. For this 
reason, the number of trees for the RF algorithm, Nt, was 
selected to be 50 trees, while the kNN algorithm used k = 20.  

Table 1 demonstrates that the tuned kNN and RF systems 
outperform random guessing based on priors, which is a 
promising outcome for these experiments. The balance of the 
normal/abnormal errors presented in Table 2, however, 
highlights the fact that there is a high confusion rate for normal 
EEGs. The dominant error is a normal EEG classified as 
abnormal. This could be explained by the presence of benign 
variants, or electroencephalographic patterns that resemble 
abnormalities, but do not qualify as events that would be of 

	
Figure 6. kNN performance as a function of k. 

	
Figure 5. Performance of the system for a temporal to occipital (T5-
O1) and a frontal to central (F4-C4) EEG channel. The performance 
for the T5-O1 channel was verified to be consistently better for PCA 
dimensions higher than 20. 

No.	 System	Description	 Error	

1	 Random	Guessing	 49.8%	

2	 kNN	(k	=	20)	 41.8%	

3	 RF	(Nt	=	50)	 31.7%	

Table 1. A comparison of performance for our final three optimized 
systems is shown. kNN and RF perform significantly better than 
random guessing based on prior probabilities. 

	 Normal	 Abnormal	

Normal	 50.5%	 49.5%	

Abnormal	 34.0%	 66.0%	

Table 2. A confusion matrix generated for the best kNN system. 

	

Figure 4. The forced-choice error rate for normal/abnormal 
classification is shown as a function of the number of PCA 
dimensions retained for RF and kNN. 



significance for the abnormal classification of a record. Also, 
we have not attempted to employ more sophisticated models of 
normal EEGs that include explicit models for events like 
artifacts and eye movements [7]. 

The computational time for training and evaluation for each 
algorithm is shown as a function of k and Nt, respectively, in 
Figure 7. kNN was considerably faster than the RF for training, 
but considerably slower for recognition, behavior that is 
explained by the nature of each algorithm. The behaviors 
presented in Figure 7 support the decisions for the tuning of each 
system parameter in both cases. 

In a previous instance of this investigation, it was stated that 
parameters such as k and 𝑁< were selected according to their 
performance and computational efficiency. For the Random 
Forest algorithm, for instance, the performance after 45 trees 
became comparable with the performance observed with greater 
number of trees, reaching optimal operation from 𝑁<=48 to 
𝑁<=52. It is important to clarify that this performance was also 
achieved with systems with a greater number of trees, but that 
the system with 50 trees was selected because the point proved 
to be beneficial considering the tradeoff between performance 
and computational efficiency. The training of this final system 
took 183.02 seconds in total for the completion of the training 
and evaluation.  

 Contrary to how it was done with the RF algorithm, the optimal 
parameters for the kNN algorithm were selected through the 
consideration of the performance and the evaluation time. The 
training time through the kNN algorithm was relatively 
unaffected by the value of k, staying closely under 1 second for 
most values of k. The optimal parameters were then selected by 
taking into consideration the computational efficiency for the 
evaluation.  The performance of the system for different values 
of k seemed to be comparable, showing the optimal 
performance when the PCA dimension was set to 86. The k 
value of 20 was then selected because the computational time 
for values of k below 30 was optimal. In this sense, the final 
system was tuned to have a value of k = 20. The total time 

required for the training and evaluation of this system was 2.14 
seconds.        

IV. SUMMARY AND FUTURE WORK 
The present study has focused on the establishment of a proper 
experimental paradigm for the automated classification of 
normal/abnormal EEGs. A baseline experiment was presented 
that we hope will serve as a reference point for future studies. 
Two approaches, kNN and RF, were evaluated on features 
generated by using a PCA dimensionality reduction on the first 
60 secs of EEG data. We have shown that the RF approach is 
better than the guessing based on priors, and resulted in an 
overall classification error rate of 31.7%. The system 
demonstrated better performance for the classification of 
abnormal records as abnormal, and had a higher confusion rate 
for normal files being identified as abnormal. Part of this 
behavior could be attributed to the benign variants that are often 
present in EEGs, such as Post Occipital Sharp Transients of 
Sleep (POSTs), which could potentially contribute to an 
erroneous classification. 

EEG interpretation knowledge presented in [8], [9], [10] and 
[11] has been used in order to establish a system that resembles 
the common methods and techniques implemented by 
clinicians. Knowledge about the importance of the posterior 
dominant rhythm was used select the T5-O1 channel for 
processing. We verified that this channel appears to be rich in 
information for this task. 

There are a number of obvious extensions of this work. First and 
foremost, we need to incorporate more temporal information 
into the process. This can be easily done building on the 
concepts presented in [7]. We can also incorporate more 
channels into the processing steps. Further, we can introduce 
more in sophisticated models for the normal class label, which 
essentially functions as a universal background model [13]. 
Finally, we can detect additional features, such as those 
described Figure 1, and incorporate this information into the 
multi-level processing scheme described in [7]. 

Note that the data used on this study is publicly available at 
www.nedcdata.org. It is a subset of the TUH EEG Corpus which 
is also available at the same URL. 
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Figure 7. An analysis of the computational requirements for kNN and 
RF are shown. The computation time for the training through the RF 
algorithm is directly  proportional to the number of trees, while the 
evaluation is very fast. The training through the kNN algorithm is 
close to 1 second for most values of k, and the evaluation becomes 
computationally heavier for values of k greater than 45, reaching a 
maximum of 2.2 when k = 58. 
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