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Automatic Scaling Range Selection for
Long-range Dependent Network Traffic
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Abstract— In this paper, we present an adaptive search algo-
rithm to automatically select the scaling range in the wavelet-
based Hurst parameter estimation method. This algorithm is
recursive and adaptive in nature, and it can select a scaling range
consistent with human visual selection. In addition, it can be
easily extended to automatically find the (approximately) linear
regions of any curve. We tested our algorithm on 13 NLANR
network traffic traces. The results show that our algorithm works
well for the cases of monofractal traffic.

Index Terms— LRD, monofractal network traffic, Hurst pa-
rameter, wavelets, Theil’s Inequality.

I. INTRODUCTION

IT IS believed [1] that the high variability in Internet traffic
is due to the long-range dependence (LRD) property of the

traffic processes. In general, a (weakly) stationary discrete-
time real-valued stochastic process Y = {Yn,n = 0,1,2, . . .}
with mean µ = E[Yn] and variance σ2 = E[(Yn −µ)2] < ∞
exhibits LRD if ∑∞

k=1 r(k) = ∞, where r(k) measures the
correlation between samples of Y separated by k units of
time. If ∑∞

k=1 r(k) < ∞, then Y is said to exhibit short-range
dependence (SRD).

Common traffic models with LRD are based on self-
similar processes. In traffic modeling, the term self-similarity
is usually used to refer to the asymptotically-second order self-
similar processes [1]. By definition, asymptotically second-
order self-similarity implies LRD and vice versa [1]

The parameter H is called the Hurst parameter. For gen-
eral self-similar processes, it measures the degree of “self-
similarity.” For random processes suitable for modeling net-
work traffic, the Hurst parameter is basically a measure of the
speed of decay of the tail of the autocorrelation function. If
0.5 < H < 1, then the process is LRD, and if 0 < H ≤ 0.5, then
it is SRD. Hence, H is widely used to capture the intensity
of long-range dependence in a traffic process. The closer H
is to 1 the more long-range dependent the traffic is, and vice
versa.

There are several methods for estimating H from a traffic
trace. One of the most widely used is based on wavelets [2].
Given a traffic trace Yn, H can be estimated as follows:

• First, for each scale j and position k, compute the wavelet
coefficients: d( j,k) =< Yn,Ψ j,k(n) >= ∑∞

n=1YnΨ j,k(n)
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where Ψ j,k(n) = 2− j/2Ψ0(2− jn − k) and Ψ0 is the
(Daubechies) mother wavelet [2].

• Then, compute the wavelet energy µ j for each scale j:
µ j = 1

Nj
∑

Nj
k=1d2( j,k) where Nj is the total number of

wavelet coefficients at scale j.
• Next, make a plot of log2(µ j) versus scale j and apply

linear regression over the curve region that looks linear.
Compute the slope α.

• Finally, estimate the Hurst parameter as Ĥ = α+1
2 .

The scaling behavior of internet traffic is not strictly self-
similar, but rather more complex [5]. By using the wavelet
method above, we will usually see that the log2(µ j) versus
j curve is not strictly linear (for example, see Figures 1-3).
Below a certain cut-off scale j1, the scaling behavior is not
self-similar. (It is believed that internet traffic below the lower
cut-off scale j1 exhibits multi-fractal scaling behavior.) Above
a certain higher cut-off scale j2, there will be few transformed
wavelet coefficients, and the estimation of the Hurst parameter
will be quite noisy [3]. When estimating the Hurst parameter,
it is better to discard data in the fine scales less than j1 and
coarse scales greater than j2.

So far, to estimate the Hurst parameter using the wavelet-
based method, a visual inspection of the log2(µ j) vs. j plot
is necessary to identify the linear trend region of the curve
(see step 3 above). This becomes a problem because it is not
objective. Furthermore, there are situations in which visual
inspection is not possible such as real-time automatic Hurst
parameter estimation. This problem is very important in the
process of determining the Hurst parameter by the wavelet
method.

In this paper, we present a robust, adaptive and recursive al-
gorithm that automatically searches and determines the linear
region of the curve. To the best of our knowledge, there is no
other such algorithm proposed in the literature. The algorithm
recursively finds the scales j1 and j2 for which the curve
over the range [ j1, j2] seems linear. This algorithm is based
on the greedy algorithm principle [6]. It first finds the local
optimum subsolution of the starting [ j1, j2] interval. It then
expands the interval (see next section) and finds again the local
optimum subsolution. This process of the algorithm continues
until this series of local optimum subsolutions converges to
the global optimum solution. The algorithm is simple and
fast with complexity O(n), and thus it can be incorporated
into the present wavelet-based method for real-time Hurst
parameter estimation of monofractal network traffic. We tested
our algorithm with 13 long traffic traces from the Auckland-
II, Auckland-IV, NZIX-II, Bell Labs-I, and Abilene-I data
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Fig. 1. log2(µ j) vs. scale j for the Auckland-IV traffic trace 20010301-310-0.

archives [7].
The rest of this paper is organized as follows. Section

II presents our proposed algorithm. Section III shows some
scaling range results on real traffic traces using our algorithm.
Our conclusions are presented in section IV.

II. THE ALGORITHM

To determine the linear region of a curve, a natural approach
is to use linear regression for modeling the observational
data. In deriving such a model, we measure how closely
the model characterizes the observational (experimental) data.
Rather than the usual residual (the sum of the squares of the
deviations), our approach uses Theil’s inequality coefficient U
[4]. Since it is normalized, U is a data-independent measure
of the goodness-of-fit. It is defined as follows:

U =

√
(1/N)∑N

j=1(Y
s
j −Y a

j )2√
(1/N)∑N

j=1(Y
s
j )2 +

√
(1/N)∑N

j=1(Y
a
j )2

(1)

where Y s
j denotes the model derived values, Y a

j denotes
the observational values and N denotes the total number of
observational data points. The numerator is the square root of
mean square error, and the denominator is used to normalize U
in the range of 0 and 1. If U is 0, then the model’s simulation
results match exactly the observational data. As U approaches
1, the accuracy of the model worsens.

The algorithm searches and determines the linear region of
the curve. Given a log2(µ j) vs. j curve for a traffic trace Yn,
we begin by choosing j1 < j2 in the middle region1 of the
curve. Then, while the Theil’s parameter for the range [ j1, j2]
is below some given threshold γ0, we expand the range either
left to [ j1 −1, j2] or right to [ j1, j2 +1], always choosing the
expansion with the smaller value of Theil’s parameter. So as
long as this process continues, the linear range [ j1, j2] will
stretch to its optimal width.

The following shows the algorithm in detail:

1) Set the initial values of j1 and j2 as follows: j1 = M
2 −

1, j2 = M
2 +1, where M is the maximum wavelet scale.

Let L be the length of Yn, then M = log2(L).

1All traffic traces analyzed for this paper exhibit monofractal behavior that
spans the middle region of the wavelet curve. Therefore, for simplicity, we
let the algorithm to start progressing from the middle region of the curve.
However, this is not a necessary condition of the algorithm.
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Fig. 2. log2(µ j) versus scale j for the Bell Labs-I traffic trace 20020519-
151927.
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Fig. 3. log2(µ j) versus scale j for the Abilene-I traffic trace IPLS-KSCY-
20020814-090000-1.

2) Using the least square method, fit a linear line between
j1 and j2: y( j) = k j + b + ε j. where y( j) = log2(µ j)
and ε j is the error associated with point j. Letting
N = j2− j1 +1, the slope k and constant b are computed
as follows:

k =
N ∑ j2

j= j1
jy( j)−∑ j2

j= j1
j ∑ j2

j= j1
y( j)

N ∑ j2
j= j1

j2 − (∑ j2
j= j1

j)2

b =
∑ j2

j= j1
y( j)

N
− k

∑ j2
j= j1

j

N
3) Next, compute Theil’s U parameter using (1) and data

between j1 and j2. Note that here Y s
j = k j + b, Y a

j =
y( j), j = j1, ..., j2 : δ( j1, j2) = U

4) If δ( j1, j2)≤ γ0 then compute δ( j1−1, j2) and δ( j1, j2 +
1).

a) If δ( j1−1, j2) < δ( j1, j2 +1) and δ( j1−1, j2) < γ0

then set j1 ← j1 −1 and go back to Step 2.
b) If δ( j1, j2 +1) < δ( j1−1, j2) and δ( j1, j2 +1) < γ0

then set j2 ← j2 +1 and go back to Step 2.
5) else Stop.
Obviously, the value of the residual error threshold γ0

determines the goodness-of-fit. We recommend using the
threshold value γ0=0.015. On one hand, Table II shows that
this threshold produces linear ranges that closely match the
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TABLE I

STEP BY STEP ILLUSTRATION OF LINEAR RANGE SELECTION BY

ADAPTIVE SEARCH ALGORITHM FOR THE CURVE IN FIGURE 1.

number of points(N) [j1,j2] stretch direction theil U

3 [9,11] 0.0039

4 [9,12] right 0.0035

5 [9,13] right 0.0032

6 [9,14] right 0.0033

7 [8,14] left 0.0036

8 [8,15] right 0.0042

9 [8,16] right 0.0041

10 [7,16] left 0.0052

11 [6,16] left 0.0064

12 [5,16] left 0.0075

13 [4,16] left 0.0084

ranges obtained by visual inspection. On the other hand, such
γ0 is close enough to zero to yield a good estimate of the
Hurst parameter.

III. RESULTS

We implemented the above algorithm in Matlab and ob-
tained automatically the linear trend ranges [ j1, j2] for the 13
long traffic traces.

To illustrate how the algorithm works, we take traffic
trace 20010301-310-0 as an example to demonstrate how the
algorithm gradually searches for the optimal linear scaling
range. Table I shows detailed search results step by step.

In Table II, the linear scaling range obtained using visual
inspection and the adaptive search algorithm are compared.

Clearly, the algorithmically obtained linear regions for the
log2(µ j) vs. j curves are consistent with ones obtained from
visual inspection. To estimate the Hurst parameter we used
the Matlab routine LDestimate.m which is available in [8].
We observe from Table II that the estimated Hurst parameter
values for two of the IPLS traffic traces are greater than
one. The explanation of this is beyond of the scope of
this paper. However, the reader should note that there are
well-defined self-similar processes with stationary increments,
infinite second moments, and H ≥ 1 [9].

IV. CONCLUSION

In this paper, we presented a robust and adaptive algorithm
that can be incorporated in the wavelet-based method of
estimating the Hurst parameter for monofractal traffic traces,
that is, traffic traces that exhibit monofractal behavior over
a wide range of time scales. It provides a systematic and
objective way to determine the linear trend region instead of
subjective human visual inspection. It is based on the greedy
algorithm principle and uses Theil’s inequality measure. Our
algorithm automatically searches and determines the linear
region of the log2(µ j) vs. j curve. That is, the algorithm
recursively finds the scales j1 and j2 for which the curve over
[ j1, j2] looks linear.

This algorithm is an improvement to the process of estimat-
ing the Hurst parameter in the wavelet domain. It can be easily
integrated with various traffic control schemes that require

TABLE II

COMPARISON BETWEEN ALGORITHMICALLY OBTAINED LINEAR TREND

REGIONS AND VISUAL INSPECTION FOR THE AUCKLAND TRAFFIC

TRACES.

Traffic Trace by inspection by algorithm Ĥ

19991129-134258-0 [4,20] [3,20] 0.813

19991129-134258-1 [6,20] [7,20] 0.968

19991201-192548-0 [3,19] [3,19] 0.890

nzix-II [4,15] [4,16] 0.979

20010220-226-0 [3,15] [4,14] 0.836

20010220-226-1 [4,15] [4,15] 0.891

20010301-310-0 [4,16] [4,16] 0.919

20010301-310-1 [4,16] [4,16] 0.903

20020519-000000 [5,10] [2,9] 0.564

20020519-151927 [2,15] [4,15] 0.964

IPLS-CLEV-20020814-0 [4,12] [5,12] 1.299

IPLS-CLEV-20020814-1 [4,12] [4,12] 0.965

IPLS-KSCY-20020814-1 [4,12] [4,12] 1.121

real-time Hurst parameter estimations. It is known that any
wavelet-based curve of a truly monofractal process exhibits
a linear behavior over a region that spans the middle scale
values [1], [2]. Thus, we configured our algorithm to start
processing from the middle region of the observational curve.
When we tested our algorithm with 13 long NLANR traffic
traces, we obtained satisfactory results. These traffic traces
exhibit monofractal behavior that spans the middle region of
the wavelet curve, otherwise the processes would have been
classified as multifractal.

The algorithm can be easily generalized in respect to the
starting point, as subject of future work. It can be easily
modified such that, for example, the initial values of j1 and j2
are set to be the two end scale values (i.e., first and last). In
this case, the algorithm should be extended to automatically
determine all the linear regions of a curve and then have the
intelligence to determine the linear zone that corresponds to
the monofractal behavior of the traffic process.

REFERENCES

[1] K. Park and W. Willinger, Editors, Self-Similar Network Traffic And
Performance Evaluation. John Wiley & Sons, May 2000.

[2] P. Abry and D. Veitch, “Wavelet analysis of long-range dependent
traffic,” IEEE Trans. Inform. Theory, vol. 44, no. 1, pp. 2-15, 1998.

[3] S. Giordano, S. Miduri, M. Pagano, F. Russo, and S. Tartarelli, “A
wavelet-based approach to the estimation of the Hurst parameter for
self-similar data,” in Proc. 13th International Conference on Digital
Signal Processing (DSP 97), vol. 2, pp. 479-482.

[4] H. Theil, Statistical Decomposition Analysis. Amsterdam: North-
Holland Publishing Company, 1972.

[5] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz, “The
changing nature of network traffic: scaling phenomena,” Computer
Communication Review, vol. 28, pp. 5-29, Apr. 1998.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press, 2001.

[7] NLANR PMA, Special Traces Archive (online). Available at
http://pma.nlanr.net/Special/index.html

[8] D. Veitch (Nov. 2002), “Code for the estimation of scaling exponents,
LDestimate.m (online). Available at
http://www.cubinlab.ee.mu.oz.au/ darryl/secondorder code.html

[9] J. Beran, Statistics for Long-Memory Processes. Chapman & Hall/CRC,
1994.




