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A COMPREHENSIVE STOCHASTIC MODEL

FOR TCP LATENCY AND THROUGHPUT
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Abstract

In this paper, we first develop a new model for the slow-start phase based on the discrete evolutions of the

congestion window. By examining the evolution of the congestion window size under the effects of the delayed

ACK mechanism, we show that the early rounds of the congestion window evolution in the slow-start phase can be

well approximated with a Fibonacci sequence. This greatly simplifies the derivation of the relationship between the

number of transmitted packets and the congestion window size. Using this new slow-start phase model, we then

construct a complete and more accurate TCP steady-state model. Major improvement in modeling the steady-state

is further achieved by relaxing key assumptions and enhancing critical approximations that have been made in

existing popular models. Finally, based on our slow-start phase and improved steady-state models, we develop a

stochastic model which can more accurately predict the throughput and latency of short-lived TCP connections

as a function of loss rate, round-trip time, and file size. We validate our models with simulations and compare

them against existing models. The results show that our extended steady-state model is up to75% more accurate

than the model proposed in [3]. In addition, our model for the short-lived flows yields more accurate performance

predictions (up to20%) than the ones developed in [4] and [5].
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1. Introduction

A multitude of Internet applications, such as the world wide web, usenet news, file transfer and remote

login, have opted TCP as the transport mechanism. Thus, TCP greatly influences the performance of

Internet [6], [7], and a well-designed TCP is of utmost importance to the level of satisfaction of Internet

users. Several stochastic TCP models have been proposed [3]-[5], [8] for predicting its performance in

terms of latency and throughput. Considerable emphasis has been given into better understanding of the

dynamics of TCP and its sensitivity to network parameters, such as the TCP round trip time and the packet

loss rate. Understanding the impact of TCP dynamics on its performance is critical for optimizing TCP and

the design of active queue management techniques [9], [10] and TCP-friendly multicast protocols [11],

[12]. Also, there has been a great interest in using utility maximization approaches for QoS provisioning,

where TCP congestion control mechanisms can be viewed as distributed primal/dual algorithms in solving

network utility optimization problems [13]-[17].

TCP is a very complex protocol, and the fast-changing network conditions make the development of an

accurate TCP stochastic model to be a very challenging task. Stochastic models of TCP can be classified
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into three classes: (1) steady-state models for predicting the performance of bulk transfer flows [18], [3],

(2) models for short-lived flows assuming low loss rates [19], [8], [20], and (3) models that combine the

first two models [5], [4].

To the best of our knowledge, none of the steady-state models proposed so far account for the slow-start

phase which begins at the end of every single time-out. The work in [3] assumes that the slow-start phase

happens less frequently than the congestion-avoidance phase and the throughput in the slow-start phase

is less than that in the congestion-avoidance phase, and that the slow-start phase can be ignored safely.

While this could be the case for small loss rates, the assumption does not hold in general. Empirical

measurements have shown that the loss rate could range from a lower value of0.4% to a higher value of

11.7% [21]-[23], and90% of the packet losses lead to time-outs [3]. Since TCP enters the slow-start phase

when a time-out occurs, accurate TCP performance models must take into consideration of the aggregate

effects of the slow-start phases.

All steady-state models assume the availability of unlimited data to send. Hence, the impact of the

transient phase on performance is considered insignificant, and therefore is ignored. These models work

well only for predicting the TCP send rate or the throughput of bulk data transfers, and are not applicable

to predicting the performance of short-lived TCP flows. It is noted in [24]-[25] that the majority of TCP

traffic in the Internet consists of short-lived flows, i.e., the transmission comes to an end during the slow-

start phase before switching to the congestion-avoidance phase. Hence, new models are needed that are

capable of predicting the performance of short-lived TCP flows.

In this paper, we first develop a better model for the slow-start phase based on the discrete evolutions

of the congestion window. By examining the evolution of the congestion window size under the effects

of the delayed ACK mechanism, we show that the early rounds of the congestion window evolution in

the slow start phase can be well approximated with a Fibonacci sequence. This greatly simplifies the

derivation of the relationship between the number of transmitted packets and the congestion window size.

We then integrate this new slow-start phase model that accurately captures the congestion window

growth pattern with an improved steady-state model to construct a complete and more accurate steady-

state TCP performance prediction model. Major improvement in modeling the steady-state is achieved by

relaxing key assumptions and enhancing critical approximations that have been made in existing popular

models, such as the one proposed in [3]. Specifically, we derive a more accurate approximation of the

probability that a loss detection is a time-out (see (36)) than the one proposed in [3] (see (32)). In deriving

our model, we show that it is very unlikely that a packet loss will occur during a slow-start phase resulted

from a time-out. This allows us to easily estimate the expected number of packets sent during each

slow-start phase.

Finally, using our slow-start phase and improved steady-state models, we construct a stochastic model

which can more accurately predict the throughput and latency of short-lived TCP connections as a function

of loss rate, round-trip time, and file size. A major achievement in developing this model is the derivation

of a closed-form expression of the probability that the first packet loss will lead to a time-out (see (49)).

We show that this expression is indifferent to the delayed ACK mechanism. In addition, we demonstrate

that as the transferred file size and/or packet loss rate increase, the throughput predicted by this model
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approaches the one predicted by our extended and improved steady-state model.

The rest of the paper is organized as follows. We first present the general assumptions we made for

building our models in Section 2 and then we construct our slow-start phase model in Section 3. We present

the derivation of our extended steady-state model in Section 4 and in Section 5 we build the stochastic

model for short-lived flows. In section 6, both models are validated with simulations and compared against

existing models. Finally, Section 7 concludes the paper.

2. Assumptions

As in [3], we develop our models based on the BSD TCP Reno release [26]. We assume that the link

speed is very high, the round-trip time (RTT) remains fairly constant at all times, and the sender sends

full-sized segments whenever the congestion window (cwnd) allows. The advertised window is assumed

to be always a constant and large. Thus, the congestion window evolution alone determines the send rate,

which roughly can be calculated ascwnd/RTT .

We model the dynamics of TCP in terms of “rounds” as done in [3]. A round starts when a window of

packets is sent by the sender and ends when one or more acknowledgments are received for these packets.

The effect of the delayed acknowledgment is taken into consideration, but neither the Nagle algorithm

nor the silly window syndrome avoidance is considered. In addition, we assume that the packet losses

are in accordance with the bursty loss model. The packet losses in different rounds are independent, but

they are correlated within a single round; that is, if one packet in a round is lost, then the following back

to back packets in the same round are also assumed to be lost. This is an idealization of the packet loss

dynamics observed in the paths where FIFO drop-tail queues are used [4]. Finally, we assume that the

sender has unlimited data to send.

3. Slow-Start Phase Model

In this section, we derive the slow-start phase model based on the discrete evolutions of the congestion

window. This model is used in the development of the extended steady-state and short-lived TCP models.
Since TCP has no knowledge of the network conditions, during the slow-start phases, it probes for

the available bandwidth “greedily”, i.e., it increases thecwnd by one upon the receipt of a non-repeated
acknowledgment. This algorithm can be formulated as:

cwndi = �cwndi−1

2
� + cwndi−1 (1)

in which cwndi is the congestion window size for theith round. (1) is due to the fact that assuming no
loss, in round (i − 1), there is a total ofcwndi−1 packets sent to the destination, which, in turn, causes
the receiver to generate�cwndi−1/2� acknowledgments1. According to the slow-start algorithm, upon
receiving these ACKs, the sender increases thecwnd by the number of ACKs it has obtained, which is
�cwndi−1/2�. Noting that the congestion window is an integer, we can simplify (1) as follows2:

cwndi = �3
2
cwndi−1� (2)

1�x� =the smallest integer bigger thanx.
2In deriving a model for the latency of the short-lived TCP flows, (2) was approximated in [4] as:cwndi = 3cwndi−1/2.
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Rearranging, we get:
�cwndi−1

2
� = �1

2
�3
2
cwndi−2�� ≈ cwndi−2 (3)

Substituting this in (1), we get the following:

cwndi ≈ cwndi−2 + cwndi−1 (4)

In order to examine the accuracy of this approximation, a typical evolution ofcwnd is given as follows:
1, 2, 3, 5, 8, 12, 18, 27, ... Compared with the sequence generated by (4):1, 2, 3, 5, 8, 13, 21, 34, ... and the
evolution of cwnd proposed by the model in [4]:1, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, ... or calculated
as:1, 1.5, 2.25, 3.38, 5.06, 7.59, 11.39, 17.09... The similarity between the two previous sequences and the
discrepancy between the real evolution ofcwnd with the proposed model in [4] show that (4) gives a
better approximation of the slow-start phase. Noting that (4) generates the Fibonacci sequence, we can
therefore expresscwnd as follows:

cwndn = C1X
n
1 + C2X

n
2 , n = 1, 2, 3, ... (5)

where3 X1,2 = (1 ±√
5)/2. C1 andC2 are determined by the initial value ofcwnd. Assuming the initial

value ofcwnd is 1, we getC1,2 = (5 ±√
5)/10.

By knowing the evolution of the congestion window, we can calculate the total number of packets,Y ss
n ,

that are sent until thenth round, by summing the congestion window size during each round:

Y ss
n =

n∑
i=1

cwndi

= C1X
n+2
1 + C2X

n+2
2 − 2

≈ C1X
n+2
1 − 2 (6)

The last approximation is due to the fact thatC2X
n+2
2 ≤ |5−

√
5

10
× (1−√

5
2

)3| = 0.065. Thus, from (6), the
number of rounds,n, can be computed as:

n = logg(
Y ss

n + 2
C1

) − 2 (7)

Substituting (7) into (5), we can get the approximate relationship between the congestion window size
and the total number of packets that have been sent, as follows:

cwndn =
Y ss

n + 2
g2

(8)

4. Steady-State Model Incorporating the Slow-Start Phase

In the following, we build an extended steady-state model by taking into account the slow start phase.

Fig. 1 depicts an instance of the congestion window’s evolution over time. As shown in the figure, when

a time-out occurs due to lost packets, TCP enters into the slow-start phase to recover from a perceived

network congestion.

3X1 is also called the golden number which will be denoted asg in the later parts of this paper.
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Figure 1. The extended steady state model - evolution of congestion window size when loss indications are triple-duplicate ACK’s and

time-outs.

Let TDP be the period between two triple-duplicate (TD) losses,Z ss
i be the time spent in the slow-

start phase,ZTD
i be the duration of the congestion-avoidance phase, andZTO

i be the time interval of the
time-out phase. LetMi be the number of packets sent during the total timeSi. Then, we have that:

Mi = Y ss
i +

ni∑
j=1

Yij + Ri, (9)

Si = Zss
i + ZTD

i + ZTO
i

= Zss
i +

ni∑
j=1

Aij + ZTO
i (10)

whereY ss
i is the number of packets sent during the slow-start phase,Aij is the duration of thejth TDP,

ni is the total number of the TDPs in the intervalZTD
i , Yij is the number of packets sent during thejth

TDP of intervalZTD
i , andRi is the number of packets sent during the time-out phase.W ss

i is the window

size at the end of a slow start and finallyW TD
ij is the window size at the end of thej th TDP.

Assuming(Si, Mi) to be a sequence of independent and identically distributed (i.i.d.) random variables,
we determine the send rate asB = E[M ]/E[S]. Consideringni to be i.i.d. random variables and
independent ofYij andAij , we have:

B =
E[Y ss] + E[

∑ni

j=1 Yij ] + E[R]
E[Zss] + E[

∑ni

j=1 Aij ] + E[ZTO]

=
E[Y ss] + E[n]E[Y ] + E[R]

E[Zss] + E[n]E[A] + E[ZTO]
(11)

We next derive the closed form expressions for these expected values in the different TCP phases: the

slow-start, the congestion-avoidance and the time-out phases.

4.1 The Slow-Start Phase

According to TCP Reno [27], [26], the current state of a TCP connection is determined based upon the

values of the congestion window size (cwnd) and the slow-start threshold (ssthresh). If cwnd is less

thanssthresh, TCP is in the slow-start phase, otherwise, it is in the congestion-avoidance phase.
Taking the expectation of both sides of (8), we have the expected congestion window size given by

E[W ss] =
E[Y ss] + 2

g2
(12)
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Figure 2. Packets sent during a TDP. Adopted from [3].

If the slow-start phase is ended by a packet loss and lettingp to be the loss rate, the expected data that

have been sent during this phase can be calculated as:E[Y ss] = (1−p)/p. Substituting the value ofE[Y ss]

in (12), we get:E[W ss]∗ = (1 + p)/(pg2). This is the expected value of the congestion window when

the slow-start phase ends due to a lost packet. Observing that whenp is small, the expected value would

be much bigger than the expected value ofssthresh, i.e., E[W ss]∗ � E[ssthresh] = E[W TD]
2

, where the

last equality comes from the fact that after each time-out, the slow-start threshold is set to half of the

current congestion windowW TD. Thus, it is safe to assume that TCP enters the congestion-avoidance

phase before a packet gets lost. That is, we assume that TCP always switches from the slow-start to

congestion-avoidance phase when the congestion window reaches the value ofssthresh. We show the

proof of this in the next section after obtaining the closed-form solution ofE[W TD].
As a consequence, we have that the expected congestion window size at the end of the slow start is

constrained by the slow-start threshold:

E[W ss] = E[ssthresh] =
E[WTD]

2
(13)

Using (13) in (12) and rearranging, we obtain the expected number of packets sent during the slow-start
phase:

E[Y ss] =
E[WTD]g2

2
− 2 (14)

The time spent in the slow-start phase is obtained by multiplying the number of rounds described in (7)
with RTT:

E[Zss] = logg

(
E[WTD]

2C

)
· RTT (15)
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4.2 The Congestion-Avoidance Phase

Let Yi be the number of packets sent during theith TDP, Ai be the duration, andW TD
i be the window

size at the end of the TDP. With reference to Fig. 2, we obtain the following relations [3]4:

Yi = αi + WTD
i − 1, (16)

Ai =
Xi+1∑
j=1

rij (17)

WTD
i =

WTD
i−1

2
+

Xi

b
− 1 (18)

and:

Yi =
Xi

2

(
WTD

i−1

2
+ WTD

i − 1
)

+ βi (19)

where Xi is the penultimate round in the TDP which experiences packet losses,rij is the round trip
time, αi is the number of packets sent in a TDP until the first loss happens,b is the number of packets
acknowledged by a received ACK, andβi is the number of packets sent in the fast retransmit phase, which
is the last round [3]. Based on our assumptions,αi is obviously geometrically distributed. Hence:

P [αi = k] = (1 − p)k−1p, k = 1, 2, . . . (20)

and therefore, we have that:

E[Y ] =
1 − p

p
+ E[WTD] (21)

In addition, based on (18) and (19), we also have that:

E[X ] = b

(
E[WTD]

2
+ 1
)

(22)

E[Y ] =
E[X ]

2

(
E[WTD]

2
+ E[WTD] − 1

)
+ E[β] (23)

where we assumeXi andW TD
i are mutually independent. Combining (21), (22), and (23), we get:

1 − p

p
+ E[WTD] =

E[X ]
2

(
E[WTD]

2
+ E[WTD] − 1

)
+ E[β]

=
b(E[W T D]

2 + 1)
2

×
(

E[WTD]
2

+ E[WTD] − 1
)

+ E[β] (24)

Sinceβi is the number of packets sent whenk packets in the penultimate round are ACKed, its value
equals tok with probability:

A(w, k) =
(1 − p)kp

1 − (1 − p)w
(25)

Therefore:

E[β] = E
[w−1∑

k=0

k · P (β = k)|w]

= E
[w−1∑

k=0

k(1 − p)kp

1 − (1 − p)w
|w]

= E

[
(1 − p)(1 − pw(1 − p)w−1 − (1 − p)w)

p(1 − (1 − p)w)
|w
]

≈ (E[WTD] − 1)(1 − p) (26)

4For details see [3]. Note that (18) captures more accurately the window size at the end of the TDP than the one presented in [3].
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for p small. Using (26) in (24) and rearranging, we get:

E[WTD] = −2(b − 2p)
3

+

√
4(bp + 2(1 − p2))

3bp
+
(2b − 4p

3b

)2
(27)

Inserting (27) in (22), we obtain:

E[X ] =
(2p + 3)b − b2

3
+

√
b2p + 2b(1 − p2)

3p
+ (

b − 2p

3
)2 (28)

and:

E[A] = (E[X ] + 1)E[r]

= RTT

(
− b2 − (2p + 6)b

3
+

√
b2p + 2b(1 − p2)

3p
+ (

b − 2p

3
)2
)

(29)

where we assumerij ’s to be i.i.d. andE[r] ≈ RTT .
In the previous subsection, we stated without proof that the slow-start phase will enter the congestion-

avoidance phase before a packet loss happens. This can be proved ifE[W ss]∗, the expected conges-
tion window size at the end of the slow-start phase due to a packet loss, is bigger than the value of
E[ssthresh] = E[W TD]/2, which is the expected threshold at the beginning of the slow-start phase. In
other words, we need to show that:

1 + p

pg2
≥ E[WTD]

2
, (30)

whereE[W TD] is given by (27). This is easily shown below, under the (normal) condition thatp is small:

1 + p

pg2
≥

√
2

3bp

⇔ 1 − 0.3p + p2 ≥ 0

The last inequality stands obviously. In fact, (30) is valid∀p ∈ [0, 1].

4.3 The Time-out Phases

The probability that a loss indication is a time-out under the current congestion window sizew, is given
in [3] as:

min
(
1,

(1 − (1 − p)3)(1 + (1 − p)3(1 − (1 − p)w−3))
1 − (1 − p)w

)
(31)

which gets simplified when the loss rate,p, is small:QTD(w) = min(1, 3
w
). Thus,QTD, the expected

probability that a loss leads to a time-out at the end of the congestion-avoidance phase, is approximated
in [3] as follows:

QTD = E[QTD(w)] = min(1,
3

E[WTD]
) (32)

The traffic traces collected in [3] indicate that the effect of the time-outs must always be captured
by any TCP performance prediction model. In most of the traces, time-out events out-numbered the fast
retransmit events, i.e.,QTD is around90% of the total loss. This value is larger than the value given by
the formula of (32), as we further calculated that theE[W TD] is greater than10, which, in turn, renders
the QTD to be less than30%. So, we believe that this approximation underestimates the realQTD. As a
matter of fact, the underestimation ofQTD in [3] is due to the approximation ofE[1/W ] ≈ 1/E[W ] by
noting that:

E[( 1√
W

)(
√

W )]
2 ≤ E[( 1√

W
)2]E[(

√
W )2]

=⇒ 1
E[W ] ≤ E[ 1

W ]
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The equality holds only whenW is a constant.
Now, using Taylor’s formula and expectation properties, we obtain the following5:

E[
1
W

] ≈ 1
E[W ]

(1 +
V ar(W )
E[W ]2

) (33)

Hence, to find a more accurate approximation ofQTD, we must find the variance ofW . After a rigorous
analysis6, we obtain the variance ofW TD, the congestion window size at the end of TDP, to be:

V ar[WTD]p→0 ≈ 8(
√

3 − 1)
3bp

(34)

Substituting (27) and (34) into (33), we get:

E[
1

WTD
] =

1
E[WTD]

(1 +
V ar(WTD)
E[WTD]2

)

=
1

E[WTD]
(1 +

8(
√

3−1)
3bp
8

3bp

)

=
√

3
E[WTD]

(35)

(35) gives a better, but still simple, estimation ofE[1/W TD]. Then, QTD, the probability that a loss
detection is a time-out (TO), can be found to be:

QTD ≈ min(1,
3
√

3
E[WTD]

) (36)

The probability ofni, the number of TDPs, is derived according toQTD: p(ni = k) = (1−QTD)(k−1)·QTD.
This is due to the fact that, with probabilityQTD, the packets lost at the end of the congestion control
phase lead to a TO, and, with probability1 − QTD the TCP connection stays in TDP. By taking the
expectation ofni, we get:

E[n] =
1

QTD
(37)

The expressions for the number of packets sent in the time-out phase,E[R] and its duration,E[Z TO] are
given in [3] as:

E[R] =
1

1 − p
(38)

E[ZTO] = T0
f(p)
1 − p

(39)

wheref(p) is defined as:f(p) = 1 + p + 2p2 + 4p3 + 8p4 + 15p5 + 32p6.

4.4 The Steady State Send Rate and Throughput

Substituting (14), (15), (21), (27), (29), (36), (37), (38) and (39) into (11), and taking into consideration
the limitation of the window size [3], we finally derive the send rate as:

B =




E[W TD ]g2

2 −2+ 1
QTD(E[W T D ])

( 1−p
p +E[W T D])+ 1

1−p(
logg(

E[W T D ]
2C1

)+ 1
QT D(E[W T D])

(
bE[W TD ]

2 +b+1)
)
RTT+

f(p)T0
1−p

whenE[W TD] < Wm

Wmg2
2 −2+ 1

QTD(Wm)
( 1−p

p +Wm)+ 1
1−p

logg( Wm
2C1

)RTT+ 1
QT D(Wm)

(( b
8 Wm+ 1−p

pWm
+2)+1)RTT+

f(p)T0
1−p

whenE[W TD] ≥ Wm

(40)

5See Appendix 1 for the derivation.
6See Appendix 2 for details.
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rate (p) for the case of:RTT = 200ms, MSS = 536bytes, w1 = 1segment, T0 = 1sec, Wm = 20segments, b = 2.

This can be further simplified as:

min( Wm

RTT
1

RTT
√

2bp
3 +min

(
1,9

√
bp
8

)
p( RT T

2 logg( 2
3bpC2

1
)+T0(1+32p2))

)
(41)

To derive the throughput, we only need to changeE[Y ], the expected size of packets that have been
sent in a TDP, toE[Y ′], the expected size of packets that have been received in a TDP.E[Y ′] can be
expressed as:E[Y ′] = E[α] + E[β]− 1, whereE[α] is 1/p andE[β] is given by (26). Also we substitute
E[R] with E[R′], the expected number of packets received in the time out phase, where [3]E[R′] = 1.
Thus, the throughput can be formulated as:

H =
E[Y ss] + E[n]E[Y ′] + E[R′]
E[Zss] + E[n]E[A] + E[ZTO]

(42)

or:

H =




E[W T D ]g2

2 −2+ 1
QT D(E[W T D ])

( 1−p
p +(E[W TD ]−1)(1−p))+1(

logg( E[W T D ]
2C1

)+ 1
QT D(E[W T D ])

( bE[W T D]
2 +b+1)

)
RTT+

f(p)T0
1−p

whenE[W TD] < Wm

Wmg2

2 −2+ 1
QT D(Wm)

( 1−p
p +(Wm−1)(1−p))+1

logg( Wm
2C1

)RTT+ 1
QTD(Wm)

(( b
8 Wm+ 1−p

pWm
+1)+1)RTT+

f(p)T0
1−p

whenE[W TD] ≥ Wm

(43)

which, when p is small, can be simplified as (41). This can be explained by noting that, if a loss seldom

happens, then the send rate should just equal to the throughput.

Fig. 3 compares our model against the one proposed in [3]. It shows the predicted throughput difference

versusp for the case ofRTT = 200 ms, MSS = 536 bytes,w1 = 1 segment,T0 = 1 sec,Wm = 20

segments, andb = 2. With both models, whenp → 0, thenH → Wm/RTT . However, for10−3 < p <

10−1, the model in [3] overestimates the throughput by up to a factor of 2.5 (atp ≈ 10−2). Obviously,

whenp → 1, again both models obtain the same performance values.

5. Stochastic Model for Short-lived Flows

Our proposed model for the short-lived TCP flows is partially based on our results given in Section 4-1.

In addition, it is composed of four parts according to a typical short-lived flow evolution: the start of the

connection (three-way-handshake), the initial slow-start phase, the first loss, and the subsequent losses.

We first derive the latency a flow experience in each part, and then sum them to obtain the total latency.
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5.1 The Connection Start-up Phase

Every TCP connection starts with the three-way-handshake process. Assuming that no ACK packets can
get lost, this process can be well modeled as follows [4]:

E[Ttwhs] = RTT + Ts(
1 − p

1 − 2p
− 1) (44)

whereTs is the duration of SYN time-out andp is the packet loss rate.

We further assume that two or more time-outs within the three-way-handshake process is very rare.

Otherwise, the slow-start threshold would get set to one, and therefore, the connection would get forced

directly into the congestion-avoidance phase instead of into the slow-start phase.

5.2 The Initial Slow-start Phase

After the three-way-handshake, the slow-start phase begins. In this phase, the sender’s congestion window
(cwnd) increases exponentially until either of the following two events occur: a packet gets lost or the
cwnd reaches its maximum valueWm. In order to derive the latency for this phase,E[Yinit], the expected
number of packets sent until a loss occurs is given by the following enhanced equation (based on the one
given in [4]):

E[Yinit] =
(1 − (1 − p)d)(1 − p)

p
(45)

whered is the total file size measured in packets that must be transmitted. Substituting (45) in (12), we
obtain the expected congestion window size at the end of the slow-start phase due to packet losses as:

E[Winit] =
(1 − (1 − p)d)(1 − p) + 2p

pg2
(46)

If E[Winit] > Wm, then the congestion window first grows toWm and then remains there while sending

the rest of the packets. Thus, the whole procedure is divided into two parts [4]. From (12), the number of

packets sent when thecwnd grows toWm is data1 = g2 · Wm − 2. Substituting the expression ofdata1

into (7), we obtain the duration of this step measured in rounds:n1 = logg(Wm/C1). In the second part,

n2 = (E[Yinit] − data1)/Wm rounds are needed to transmit the remainingE[Yinit] − data1 packets.
Combining the previous results together and using (7) for theE[Winit] ≤ Wm case, the expected

slow-start latency is computed as follows:

E[n] =




[�logg(
Wm

C1
)� + 1

Wm
(E[Yinit] − g2Wm − 2)] whenE[Winit] > Wm

�logg(
E[Yinit]+2

C1
)� − 2 whenE[Winit] ≤ Wm

(47)

5.3 The First Loss

The initial slow-start phase ends when a packet loss is detected with a probability of1− (1−p)d. When a

packet gets lost, it could cause retransmission time-out (RTO) or lead to a triple duplicate ACKs, in which

case TCP could recover in a round or two by using the fast retransmit and the fast recovery mechanism.

We first derive the probability that a packet loss leads to a time-out (TO).

Due to the exponential growing pattern ofcwnd in the slow-start phase,Qss, the probability that a packet

loss leads to a TO is different from the probability that when the sender is in the congestion-avoidance

phase. With reference to Fig. 4, we derive the expression ofQss as follows.
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Figure 4. An illustration of a triple-duplicate (TD) event.

In the round with a TD event, letW ss be the current size ofcwnd, which has a valuew. In this round,
w packets were sent. Among them,k packets are assumed to be ACKed. Since the connection is still in
the slow-start phase,cwnd increases tow +k and another2k packets are sent in the next round7. If more
than three packets from these2k packets get ACKed, then a TD would occur; otherwise, a TO would
take place. Letting:h(m) =

∑2
i=0(1−p)ip if m ≥ 3 be the probability that no more than 2 packets have

been transmitted successfully in a round ofm packets, we then obtainQss to be:

Qss(W ss) =

{
1 for W ss ≤ 2∑1

k=0 A(W ss, k) +
∑W ss−1

k=2 A(W ss, k)h(2k) otherwise
(48)

whereA(w, k) is as given by (25) and gives the probability that the firstk packets have been successfully
transmitted and ACKed in a round ofw packets, provided that there might be one or more packets got
lost. Simplifying (48), we getQss(W ss) to be equal to:

min

(
1,

p(2 − p) + (1 − (1 − p)3)(1 − p)2(1 − (1 − p)W ss−2)
1 − (1 − p)W ss

)
(49)

As p approaches zero, (49) reduces to:

Qss = lim
p→0

E[Qss(W ss)] = min

(
1,

2
E[W ss]

)
(50)

In case of delayed acknowledgment,k successfully received packets generate
k/2�8 ACKs, and thus
the size of thecwnd increases to
k/2�+w and
k/2�+k packets are sent. ThereforeQss can be computed
as:

Qss =

{
1 for W ss ≤ 2∑1

k=0 A(W ss, k) +
∑W ss−1

k=2 A(W ss, k)h(
k
2 � + k) otherwise

which is same as (49) sinceh(2k) = h(
 k
2
� + k) for k ≥ 2.

The expected time that TCP spends in the RTOs is given by (39). The time that TCP spends in the fast
retransmit phase,nt, depends on where the loss would happen [5]:

nt =

{
2RTT if the lost packet is in the last three packets of the window

RTT otherwise
(51)

7The delayed acknowledgment concept is not applied here, but we show later that it does not affect the analysis of theQss.
8�k/2� is the biggest integer small thank/2.
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Thus, when the congestion window sizeW ss is bigger than three, the expected time,E[nt] can be found
to be:

E[nt] =
1 − (1 − p)W ss−3

1 − (1 − p)W ss × 2RTT +
(1 − p)W ss−3(1 − (1 − p)3)

1 − (1 − p)W ss × RTT

= RTT × 2 − (1 − p)W ss−3 − (1 − p)W ss

1 − (1 − p)W ss (52)

Finally, the expected latency that this loss would incur is:

Tloss = (1 − (1 − p)d)(QssE[ZTO] + (1 − Qss)E[nt]) (53)

whereW ss is W ss = min(Wm, (E[Yinit] + 2)/g2).

5.4 Sending the Rest of the Packets

After the first packet loss, the transmission latency of the rest (d−E[Yinit]) packets is obtained by using
our extended steady-state model as follows:

Trest =
d − E[Yinit]

H

=
dp − (1 − (1 − p)d)(1 − p)

p · H (54)

whereH is as given by (42).

5.5 Total Latency

Grouping (44), (47), (52) and (54) together and considering the delay (Tdelay) caused by the delayed
acknowledgment for the first packet (whose mean value is 100ms for the BSD-derived implementations),
we now have the total expected latency:

Tlatency = E[Ttwhs] + E[n]RTT + Tloss + Trest + Tdelay − RTT

2
(55)

Note that the last term is due to the fact that only half of a round is needed to send the last window of

packets.

In Fig. 5, we compare this model for short-lived TCP connections against our steady-state model.

Clearly, as the transferred file size increases, the short-lived TCP connection model approaches the steady

state model. This is because when a connection has a large amount of data to send, TCP spends most of its

time in the steady-state. In addition, as the loss rate increases, the throughput predicted by the short-lived

TCP connection model approaches the one predicted by the steady-state model. This is because as the

connection loses its packets more frequently, the transient slow-start phase ends quickly and the remaining

packets are sent in the steady-state phase.

6. Model Validation through Simulation

We validated our proposed analytical models with simulation experiments. We performed all experiments

in ns-2 [28] using the FullTCP agent. The FullTCP agent is modeled based on the 4.4BSD TCP imple-

mentation and can simulate all the important features of TCP Reno. Thens-2 simulation model used in

all experiments is shown in Fig. 6.
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Figure 6. Thens-2 model that was used to validate our analytical TCP models.

Unlike in [4] where the Bernoulli loss model is used, in our experiments packets were getting lost

according to the bursty loss model. Sincens-2 does not have built-in bursty packet loss model, we added

our own BurstyError Model, which was derived from the basic Error Model class. This BurstyError Model

drops packets with probabilityp, which is a Bernoulli trial. After a packet is selected to be dropped with

probability p, all the subsequent packets in transit are also dropped. This emulates the DropTail queues

behavior under congestion conditions.

We used FTP9 as the application for sending a controlled number of packets over a 10Mbps link. The

experiments were designed such that the minimum RTT was 200ms.

6.1 The Steady-state Model

Using the same system parameter values that were used to generate Fig. 3, we performed 1000 simulation

experiments for each value ofp, wherep was varied from 0.005 to 0.1 in logarithmic constant step sizes.

9FTP is a major Internet application that is used to remotely transfer files.
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The file size was set to 10MB. Fig. 7 compares the simulation results against the analytical results obtained

from our proposed steady-state model (Full: (43), and Approximate: (41)) and the one developed in [3].

Clearly, the results match our expectations. The predicted throughput values at each value ofp obtained

from our model much closer to the simulation values. Note that for each simulation experiment we used

a different seed for the random number generator. Unlike the usual method of displaying the results from

multiple runs in terms of the mean and 95% confidence intervals, we followed the method used in [5]

and [3] and presented all the results of the 1000 runs in same figure. That is why for each value ofp

there are many data points clustered vertically.
To quantify the accuracy of our model relative to the simulation data, we computed the average error

using the following expression taken from [3]):∑
observations |Thpredicted(p) − Thobserved(p)|/Thobserved(p)

Number of observations

whereThpredicted is the throughput predicted by the models andThobserved is the throughput observed

from the simulation experiments. A smaller average error value indicates a better model accuracy. We

plotted these average errors against loss rates in Fig. 8. It shows that in most cases the average error is

under8% for our proposed full model (i.e., (43)) and above20% for the one from [3]. Approximately, in

most cases, our model is75% more accurate than the model proposed in [3]. This supports our claim that

by including the slow-start phase into the steady-state model more accurate predictions can be obtained.

In addition, Fig. 8 depicts the following: the average error in predicted throughput from both analytical

models increases asp approaches zero. Let say thatp = 0 and the initial slow-start threshold is set to

the maximum window size. Then, the initial slow-start phase is extended until the congestion window

reaches the maximum window size. Since there are no packet losses, TCP never switches to the congestion

avoidance phase, but rather continues transmitting packets at its maximum sending rate allowed by the

maximum window size. For these cases thatp ≈ 0, our short-lived TCP flow model should be used instead

of the steady-state model.

6.2 Short-lived Flows Model: Latency versus Transferred File Size

Fig. 9 shows the relationship between the latency and the transferred file size under no loss conditions. It

compares the latency predictions given by our proposed short-lived TCP model ((55)) and the ones obtained

by the short-lived TCP models developed in [4] and [5] against the simulation results. Obviously, our

model’s prediction values match the simulated values better that the values obtained by the other models.

Our model resulted in5.83% average error, compared to9.40% and 14.53% obtained by the models in

[4] and [5], respectively.

Analyzing the results, we also observed that all prediction errors resulted from our model are within [-

RTT/2, RTT/2]. For the cases whereRTT is small, the prediction errors are insignificant. This is not valid

for the other models proposed by [4] and [5]. This because the model in [4] uses a crude approximation

(γn, see Section 3) for the evolution ofcwnd while our model well approximates it using the Fibonacci

sequence. Note that our model accounts for the delayed acknowledgment mechanism. The model in [5]

uses an empirical model derived by combining the evolution sequences ofcwnd for both delayed and
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no-delayed acknowledgment mechanisms. Again, our method yields a more accurate approximation of

the evolution of thecwnd, and therefore, our slow-start phase model is a more accurate model.

6.3 Short-lived Flows Model: Throughput versus Loss Rate and File Size

Fig. 10, 11 and 12 compares the throughput versus loss rate predictions given by our proposed short-lived

TCP model and the one obtained by the short-lived TCP models developed in [4] against the simulation

results for the cases of 2KB, 6KB, and 11KB file sizes. Table I compares the two models in terms of the

average error.

As can be observed, when the transferred file size is small and the loss rate is low, our model yields

more accurate predictions than the model from [4]. Again, this is because our model accounts for the

delay acknowledgment mechanism and usesg (golden number) instead ofγ (see [4]). However, for large
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TABLE I

OUR SHORT-LIVED TCPCONNECTION MODEL IS COMPARED AGAINST THE ONE PROPOSED IN[4] IN TERMS OF THE AVERAGE ERROR.

Loss Rate p = 0 3 × 10−3 ∼ 10−1

File Size 0.5 ∼ 26KB 2KB 6KB 11KB

[CSA00] 9.40% 4.08% 6.43% 8.38%

Proposed 5.83% 0.59% 7.54% 7.64%

file sizes and loss rates, both models yield similar predictions and in agreement with our steady-state

model, as expected.

7. Conclusion

In this paper, we first developed a better and tractable model for the congestion window growth pattern in

the slow-start phase. Using this new slow-start phase model, we constructed an extended and more accurate

TCP steady-state model and then an accurate model for the short-lived TCP flows. Major improvement

in both models was achieved by relaxing key assumptions and enhancing critical approximations that

have been made in existing popular models. We validated our models with simulations and compared

them against the models developed in [4], [5], [3]. The results support our claim that our models yield

more accurate predictions. Future work involves developing stochastic models for other more recent TCP

implementations, such as SACK, FAST, Westwood, Peach, Jersey. It also involves evaluating our models

with more complex simulation scenarios.
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Appendix 1

The expectation of 1/w

From Taylor formula, we know:

f(W ) =
∞∑

i=0

f i(a)
i!

(W − a)i (56)

Let f(W ) anda be 1/W andE[W ] respectively. We thus have:

fn(W ) = (−1)nn!W−(n+1) (57)

Substitutingf i(a) in (56) and making use of (57) andE[W ], we get:

1
W

=
∞∑

i=0

(−1)ii!E[W ]−(i+1)

i!
(W − E[W ])i

=
∞∑

i=0

(−1)i(W − E[W ])i

E[W ](i+1)
(58)

Taking expectation on both sides of (58), results in:

E[
1
W

] = E[
∞∑

i=0

(−1)i(W − E[W ])i

E[W ](i+1)
]

=
∞∑

i=0

E[
(−1)i(W − E[W ])i

E[W ](i+1)
]

=
∞∑

i=0

(−1)iE[(W − E[W ])i]
E[W ](i+1)

=
1

E[W ]
+

V ar(W )
E[W ]3

+
∞∑

i=3

(−1)iE[(w − E[W ])i]
E[W ](i+1)

≈ 1
E[W ]

+
V ar(W )
E[W ]3

=
1

E[W ]
(1 +

V ar(W )
E[W ]2

) (59)

The approximation holds whenE[W ](i+1) � E[(W − E[W ])i].

Appendix 2

The variance of W TD

Using similar assumptions as in the previous analysis, from (20), we know thatV ar[α] = (1 − p)/p2.
Thus from (16) we get:

V ar[Y ] =
1 − p

p2
+ V ar[WTD] (60)
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Using (18), we get the auto-correlation at the zero point10:

Rw(0) =
Rw(0)

4
+

Rx(0)
b2

Rx(0) =
3b2

4
Rw(0) (61)

And using (25), (26) and (27), we can compute the variance ofβ as follows:

V ar[β] = Rβ(0) − E[β]2

= E[β2] − E[β]2

= E[
w−1∑
k=0

k2p(β = k)|w] − E[β]2

= E[
w−1∑
k=0

k2(1 − p)kp

1 − (1 − p)w
|w] − E[β]2

≈ 2(1 − p)2

p2
− (1 − p)[

√
8

3bp
− 1]

2

(62)

Using (19), we can also get:

V ar[Y ] = V ar[
Xi

2
(
WTD

i−1

2
+ WTD

i − 1)] + V ar[β]

= E[(
Xi

2
)2]E[(

WTD
i−1

2
+ WTD

i − 1)2] − (E[
Xi

2
(
WTD

i−1

2
+ WTD

i − 1)]
)2 + V ar[β]

=
Rx(0)

4
5Rw(0)

4
− E[

X

2
]
2

E[
WTD

i−1

2
+ WTD

i − 1]
2

+ V ar[β]

=
3b2

4 Rw(0)
4

5Rw(0)
4

− E[X ]2

4
[
3
2
E[WTD] − 1]

2

+ V ar[β]

=
15b2

64
[V ar[WTD] + E[WTD]

2
]
2 − E[X ]2

4
[
3
2
E[WTD] − 1]

2

+ V ar[β]

≈ 15b2

64
[V ar[WTD] +

8
3bp

]
2

− 1
4

( b

2

√
8

3bp
+ b
)2(3

2

√
8

3bp
− 1
)2

+
2(1 − p)2

p2
− (1 − p)[

√
8

3bp
− 1]

2

(63)

Combining (63) and (60), we obtain the final equation:

1 − p

p2
+ V ar[WTD] =

15b2

64
[V ar[WTD] +

8
3bp

]
2

− 1
4

( b

2

√
8

3bp
+ b
)2(3

2

√
8

3bp
− 1
)2

+
2(1 − p)2

p2
− (1 − p)[

√
8

3bp
− 1]

2

(64)

Solving (64), we obtain the variance ofW TD as follows:

V ar[WTD]p→0 ≈ 8(
√

3 − 1)
3bp

(65)

10This is equal toE[X2].


