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Abstract— Commonly used measures of traffic bursti-
ness do not capture the fluctuation of traffic variability
over the entire range of time scales. In this paper, we
present a measure of variability, called the Index of Vari-
ability (Hv�τ�), that fully and accurately captures the degree
of variability (burstiness) of a typical network traffic
process at each time scale and is analytically tractable
for many traffic models. As an illustration, we derive
the closed-form expression of Hv�τ� for two traditional
traffic models and generate a variety of 2D and 3D Index
of Variability curves. These curves demonstrate that the
Index of Variability is a mathematically rigorous measure
which can be used to fully characterize the complexities of
the network traffic variability over all time scales. We then
introduce a practical method for estimating the Index of
Variability curve from a given traffic trace. Experimental
results are presented which demonstrate the robustness
of the method applied to the estimation of the Index of
Variability curves from 12 NLANR network traffic long
traces.

I. INTRODUCTION

Many empirical studies have shown that Internet traffic
exhibits high variability1 [4][7][15][20]. That is, traffic
is bursty (variable) over a wide range of time scales in
sharp contrast to the assumption that traffic burstiness
exists only at short time scales while traffic is smooth
at large time scales [15]. High variability in traffic has

1Fluctuation of traffic as a function of time.

been shown to have a significant impact on network
performance [5][15]. The results from [5][9][13][17]
show that knowledge of the traffic characteristics on
multiple time scales helps to improve the efficiency of
traffic control mechanisms. Importantly, the design and
provision of quality-of-service-guarantees over the Inter-
net requires the understanding of traffic characteristics,
such as variability.

Since the publication of [15], the popular belief is that
the high variability in traffic is due to the long-range
dependence(LRD) property of the traffic processes. In
general, a (weakly) stationary discrete-time real-valued
stochastic process Y � �Yn�n � 0�1�2� � � �� with mean
µ � E�Yn� and variance σ2 � E��Yn�µ�2� � ∞ is long-
range dependent if ∑∞

k�1 r�k� � ∞, where r�k� measures
the correlation between samples of Y separated by k units
of time. If ∑∞

k�1 r�k�� ∞, then Y is said to exhibit short-
range dependence (SRD).

Common traffic models with LRD are based on self-
similar processes. In traffic modeling, the term self-
similarity is usually used to refer to the asymptoti-
cally second order self-similar or mono-fractal processes
[19]. The definition of asymptotically second order self-
similarity is as follow [15]: assume that Y has an
autocorrelation function of the form r�k� � k�βL�k� as
k � ∞, where 0 � β � 1 and the function L is slowly
varying at infinity, i.e., limk�∞

L�kx�
L�k� � 1 �x� 0. For each

m � 1�2�3� � � �, let Y �m� � �Y �m�
n �n � 1�2�3� � � �� denote a
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new aggregated time series obtained by averaging the
original series Y over non-overlapping blocks of size m,
replacing each block by its sample mean. That is, for
each m � 1�2�3� � � �, Y �m� is given by

Y �m�
n �

Ynm�m�1 � � � ��Ynm

m
n� 1� (1)

The new aggregated discrete-time stochastic process
Y �m� is also (weakly) stationary with an autocorrelation
function r�m��k�. Then, Y is called asymptotically second
order self-similar with self-similar parameter H � 1� β

2
if for all k large enough, r�m��k� � r�k� as m � ∞.
That is, Y is asymptotically second-order self-similar
if the corresponding aggregated processes Y �m� become
indistinguishable from Y at least with respect to their
autocorrelation functions. By definition, asymptotically
second order self-similarity implies LRD and vice versa
[19].

The parameter H is called the Hurst parameter. For
general self-similar processes, it measures the degree
of “self-similarity”. For random processes suitable for
modeling network traffic, the Hurst parameter is basi-
cally a measure of the speed of decay of the tail of
the autocorrelation function. And if 0�5 � H � 1, then
the process is LRD, and if 0 � H 	 0�5, then it is SRD.
Hence, H is widely used to capture the intensity of long-
range dependence of a traffic process, the closer H is to
1 the more long-range dependent the traffic is, and vice
versa [19].

There are several methods for estimating H from
a traffic trace. One of the most widely used is the
Aggregated Variance method: for successive values of m
that are equidistant on a log scale, the sample variance
of Y �m� is plotted versus m on a log-log plot [2][21].
By fitting a least-square line to the points of the plot
and then calculating its slope, an estimate of the Hurst
parameter is obtained as Ĥ � 1� slope

2 .
Another very popular method is based on wavelets

[33]. Given a traffic trace Yn, the Hurst parameter can be
estimated as follows. For each scale j, the wavelet energy
µ j �

1
Nj

∑n j

k�1d2� j�k� is plotted versus j on a semi-log
plot (i.e., log2�µ j� vs. j). By fitting a least-square line to
the points of the curve region that looks linear and then
computing its slope α, H is estimated as Ĥ � α�1

2 .

A. Need of a New Measure of Variability

Commonly used measures of traffic burstiness, such
as the peak-to-mean ratio, the coefficient of variation of
interarrival times, the indices of dispersion for intervals
and counts, and the Hurst parameter, do not capture the
fluctuation of variability over different time scales.

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

j

lo
g2

(μ
j)

Fig. 1. log2�µ j� versus scale j for the Auckland-IV traffic trace
20010301-310-0 (For information about the trace, see Section IV).

It is claimed in [15] that the Hurst parameter is a good
measure of variability, and the higher the value of H , the
burstier the traffic. The popular belief from early studies
[18][5][16][1] on the impact of LRD on network per-
formance is that high values of the Hurst parameter are
associated with poor queueing performance. But, later
studies [12][13] show examples in which larger values
of H are associated with better queueing performance
compared to smaller values of H . In addition, the results
in [17] indicate that the queueing performance depends
mostly on the variability over certain time scales rather
than on the value of H .

Moreover, it is known [9] that different long-range
dependent processes with the same value of the Hurst
parameter can generate vastly different queueing behav-
ior. Clearly, the single value Hurst parameter does not
capture the fluctuation of the degree of traffic bursti-
ness across time scales, regardless if the traffic process
exhibits LRD or SRD. From the definition presented
in the previous section, the Hurst parameter is defined
asymptotically (i.e., for large time scales) and hence
conveys nothing about the variability of measured traffic
over small or medium time scales; unless the traffic is
exactly self-similar with known variances. Therefore, the
Hurst paremeter is an incomplete descriptor of traffic
variability.

For many network traffic processes, the wavelet
energy-scale or variance-time plots usually do not tend
to straight lines, i.e., see Figure 1. Usually many of these
processes have piecewise fractal behavior with varying
Hurst parameter over some small ranges of time scales
[29]. Such processes are usually referred to as multi-
fractal processes [34].

Queueing performace greatly depends on traffic irreg-
ularities at small time scales which are believed to be
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due to the complex dynamics of data networks [9][30].
Multifractal analysis based on the legendre spectrum is
often used to study the multiscaling behavior of traffic
at small time scales [29][35][36][37]. The process of
estimating the legendre spectrum involves higher order
sample moments and negative values of moments. It is
known [31] that higher order sample moments are not
well-behaved and negative values of moments tend to be
erratic. In addition, the legendre spectrum is difficult to
interpret [28].

Hence, there is a need for an intuitively appealing,
coneptually simple, and mathematically rigorous mea-
sure which can capture the various scaling phenomena
that are observed in data networks on both small and
large scales [32].

In this paper, we present an alternative measure of
variability, called the Index of Variability (Hv�τ�), that
fully and accurately captures the degree of variability of
a typical network traffic process at each time scale and
is analytically tractable for many traffic models.

The rest of this paper is organized as follows: In
Section II, we present a rigorous definition of the Index
of Variability. In Section III, as an illustration, we derive
the closed-form expression of Hv�τ� for two traditional
traffic models and generate a variety of 2D and 3D
Index of Variability curves. In Section IV, we present a
practical method for estimating the Index of Variability
curve from a given traffic trace. We also present some
experimental results to demonstrate the robustness of the
method. We conclude the paper in Section V.

II. INDEX OF VARIABILITY FOR PACKET TRAFFIC

SEQUENCES

Let N�t� denote the number of events (packet arrivals)
of a stationary point process in the interval �0� t�. For
each fixed time interval τ � 0, an event count sequence
Y � �Yn�τ��τ � 0�n � 1�2� � � �� can be constructed from
each point process, where

Yn�τ� � N�nτ��N��n�1�τ� (2)

denotes the number of events that have occurred during
the nth time interval of duration τ. Clearly, Y is also
(weakly) stationary for all τ � 0. In this study, Y rep-
resents a network traffic trace where Yn�τ� denotes the
number of packets observed from an arbitrary point in
the network during the nth time interval of duration τ.
We refer τ as the time scale of the traffic trace, and it
represents the length (i.e., 10ms, 1s, 10s, e.t.c.) of one
sample of Y .

The expected number of events that have occurred
during the interval �0� t� is always: E�N�t�� � t

E�X � �

λt where E�X � is the expected interarrival time and λ
is the mean event (packet) arrival rate. The index of
dispersion for counts (IDC) is defined as: IDC�t� 

Var�N�t��
E�N�t�� � Var�N�t��

λt . The IDC was defined such that it
provides some comparison with the Poisson process, for
which IDC�t� � 1 �t. Note that since the point process
is stationary, IDC has the same value over any interval
of length t. Hence, t can be viewed as the time scale
τ of the traffic process Y defined in (2). From now on
we will be using t to denote generality and τ to denote
time scales, i.e., the time length of each sample of the
packet-count sequence Y .

An important feature of IDC is that it is mathemati-
cally equivalent to the Aggregated Variance method for
estimating the Hurst parameter H of a self-similar pro-
cess. For a self-similar process, plotting log�IDC�mτ��
against log�m� results in an asymptotic straight line with
slope 2H�1. When Y is a long-range dependent process,
the slowly decaying variance property of LRD processes
[15] with parameter 0 � β � 1 is equivalent to an IDC
curve2 with an asymptotic straight line with slope 1�β,
implying 0� slope� 1. When the IDC curve converges
to an asymptotic straight line with slope � 0 for some
τ � ∞, then Y is a short-range dependent process. Based
on the above property of IDC, we define the following
new measure of variability:

Definition 1: For a general stationary traffic process
Y as defined by (2) whose IDC�τ� is continuous and
differentiable over �0�∞�, we call

Hv�τ�

d�log�IDC�τ���

d�log�τ�� �1

2
(3)

the index of variability of Y for the time scale τ, where
d�log�IDC�τ���

d�log�τ�� is the local slope of the IDC curve at each
τ when plotted in log-log coordinates.

Note that the index of variability is so defined in
order that for a long-range dependent (asymptotically or
second-order self-similar) process Hv�τ� � H � �0�5�1�
for all τ � τo � 0. The value of τo depends on the
particular process. If the process is exactly self-similar
then Hv�τ� � H � �0�5�1� for all τ � 0. That is, if
log�IDC�τ�� is linear with respect to log�τ��, then Hv�τ�
reduces to H . The Index of Variability can be thought of
as the Hurst parameter defined at each time scale.

In general3, the process Y exhibits significant vari-
ability for those time scales τ such that 0�5 � Hv�τ� �
1. When d�log�IDC�τ���

d�log�τ�� � 1, then Hv�τ� � 1 implying
very high variability. A plot of Hv�τ� versus τ would

2In log-log coordinates.
3The generality here is confined for those processes that are

suitable in modeling network packet traffic.
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depict the behavior of the traffic process Y in terms
of variability (burstiness) at each time scale τ (�
10ms� 100ms� 1s� � � �).

Expanding the local slope of the IDC curve at each
time scale, we get

d�log�IDC�τ���
d�log�τ��

�
τ

IDC�τ�
d�IDC�τ��

dτ

�
τ

Var�N�τ��
d�Var�N�τ���

dτ
�1�(4)

Using the above in (3), we obtain a more convenient
form of the Index of Variability:

Hv�τ� � 0�5τ

�
dVar�N�τ��

dτ
Var�N�τ��

�
(5)

�
1
2

�
1� τ

�
d�IDC�τ��

dτ
IDC�τ�

��
(6)

In addition, setting τ � mT , where T � 0 and m �
1�2� � � �, and using the relation Var�Y �m�� � Var�N�mT ��

m2 , we
can express the index of variability function in terms of
Var�Y �m�� versus m:

Hv�mT � � 0�5m
dVar�Y �m��

dm

Var�Y �m��
�1� (7)

Suppose now Y is an aggregate sequence of packet
counts resulting from the superposition of M independent
packet-traffic sources, not necessarily identical. Then
N�t� � N1�t� � � � � � NM�t�, where Ni�t� denotes the
number of packet arrivals in the interval �0� t� from the
ith traffic source. Assuming again stationarity, we have

IDC�t� �
∑M

i�1Var�Ni�t��

∑M
i�1 λit

�
M

∑
i�1

�
IDCi�t�

Λi

�
(8)

where λi is the mean packet arrival rate from the

ith source, and Λi �
∑M

j�1 λ j

λi
� In addition, log�IDC�t��

log�t� �
log�∑M

i�1Var�Ni�t���
log�t� � log�∑M

i�1 λit�
log�t� � and upon taking the deriva-

tive in respect to log(t) we get the index of variability
for the aggregate traffic stream to be

Hv�τ� � 0�5τ

�
∑M

i�1
dVar�Ni�τ��

dτ

∑M
i�1Var�Ni�τ��

�

�
1
2

��	1� τ


�∑M
i�1

d�IDCi�τ��
dτ

�
1
Λi



∑M

i�1

�
IDCi�τ�

Λi



����� � (9)

As we can observe from (9), the variances or the
indices of dispersion for counts of the M independent
point-processes completely characterize the variability
function of the aggregate packet-count sequence Y . If
limτ�∞ IDC�τ� � limτ�∞

�
∑M

i�1

�
IDCi�τ�

Λi




� c � ∞, then

obviously, limτ�∞ Hv�τ� � 0�5. In case that all M under-
lying point processes of making up Y are also identical,
then (9) reduces to (6). If all M underlying point pro-
cesses are Poisson, then d�IDCi�τ��

dτ � 0 for all τ and i and
hence Hv�τ� � 0�5 for all τ.

III. ANALYSIS OF TRAFFIC MODELS IN TERMS OF

THE INDEX OF VARIABILITY

In this section, we derive the Index of Variability
functions for two traditional traffic models: two-state
Markov Modulated Poisson Process (MMPP) and re-
newal process with hyperexponential interarrival time
distributions of order two (RPH2). Two-state MMPP
models became popular for modeling the superposition
of packet voice streams [11].

The work in [38] shows that long-tail distributions can
be approximated by hyperexponentional distributions.
Thus, renewal processes with hyperexponential interar-
rival time distributions can be used for capturing the
high variability of traffic over any range of (short or
long) time scales. A major advantage of these models
is their relative ease of analytically obtaining queueing
performance predictions.

A. Two-state MMPP

Here we consider that the underlying point process of
Y is an MMPP with two-state Markov chain where the
mean sojourn times in state 1 and 2 are α�1 and β�1, re-
spectively. When the chain is in state i (i � 1�2) the point
process is Poisson with rate λi. Letting ρ � α�β and
υ � λ1β�λ2α, we have from [11] that E�N�t�� � υt

ρ and

IDC�t� � 1�ρA�A
�

1�e�ρt

t



, where A � 2αβ�λ1�λ2�

2

ρ3υ . It

is easy to see that limt�∞ IDC�t� � 1�ρA. Upon taking
the derivative of IDC(t) we obtain the index of variability
of Y as

Hv�τ� � 0�5

�
1�

A �1� �1�ρτ�e�ρτ�

�1�ρA�τ�A�1� e�ρτ�

�
�

1) Numerical Example: Assume α�1 � β�1 � 100
seconds, λ1 � 4 packets/second and λ2 to vary from 1 to
1000 packets/second. Figure 2 shows the resulting index
of variability curves as a function of time scale (τ) and
state rates (λi). Notice that when λ2 � λ1, we have a
pure Poisson process and therefore zero variability. But
as the difference between λ1 and λ2 increases, so does the
index of variability. From Fig. 2 we can observe that the
index of variability increases with λ2 up to its maximum
value, and any further increase in λ2 does not have any
affect on variability. We can also observe that the index
of variability increases with τ up to its maximum value
and then decays exponentially. We can also notice that
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for values of λ2 not very close to λ1, the packet-count
process Y has substantial variability over a wide range
of time scales that spans about 200 seconds.
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Fig. 2. Index of Variability for The Two-State MMPP: α�1 � β�1 �
100 Seconds, λ1 � 4 Packets/Second.

B. RPH2

We assume here that the underlying point process of
Y is a stationary renewal process with interarrival times
hyperexponentially distributed. We call this model as the
hyperexponential model. A hyperexponential distribution
of order K, (� 1�2�3� � � �), is the weighted sum of K
exponential distributions:

FK�x� � Pr�X 	 x� �
K

∑
i�1

wi�1� e�αix� (10)

where wi � 0 are the weights satisfying ∑K
i�1 wi � 1,

and αi � 0 are the rates of the exponential distributions
[10]. It is shown in [8] that if wi � wi and αi �

µ
ηi

for 0 � w � 1, η � 1, and µ � 0, then the tail of
the hyperexponential distribution gets longer and longer
with K. The major advantages of the hyperexponential
distributions over heavy-tailed distributions like Pareto
are two-fold: their Laplace transform exists, therefore
they can be utilized in analytic models, and they have
finite variance for all K.

In this paper, we only consider the case of K � 2.
Letting a � α1 and b � α2, we get the pdf of the
interarrival times to be:

f2�x� � w1ae�ax �w2be�bx
� (11)

The mean packet arrival rate is λ � ab
aw2�bw1

, and the
squared coefficient of variation of the interarrival times
is C 2�X� � 2

�
a2w2�b2w1
�aw2�bw1�2

�
� 1. Note that if a � b, then

λ � a � b and C 2�X� � 1 for all the values of w1

and w2, and hence we have a Poisson process. In
addition, limw2�0 C 2�X� � 1 and limb�0 C 2�X� � 2

w2
�1.

As shown in Fig. 3, for constant values of a and b, C 2�X�
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Fig. 3. Squared Coefficient of Variation of the Interarrival Time
vs. w2 for the Case of Hyperexponential Distribution of Order Two:
a � 100, and b � 0�0001.

increases exponentially up to its maximum value and
then decreases to one very abruptly. The maximum value
depends on the value of b and it can get extremely high.
This indicates that the hyperexponential distribution can
be used to model the interarrival times distribution of
highly bursty traffic.

From [3] we have that

Var�N�t�� � 2λ
� t

0
Φ�u�du�λt�λ2t2 (12)

where

Φ�t� � L�1 �Φ��s�� � L�1

�
�
�

2 �s�
s�1� � �2 �s��

�
� (13)

Note that the symbol L�1 denotes the inverse Laplace
transform and

�
�

2 �s� � L � f2�x�� � w1

�
a

s�a

�
�w2

�
b

s�b

�
is the Laplace transform of f2�x�. Noting that

ϕ�t� � L�1

�
�
�

2 �s�
1� � �2 �s�

�
� λ�

��aw1 �bw2�
2� �a2w1 �b2w2��e��aw2�bw1�t

aw2 �bw1

(14)
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we easily obtain Φ�t� as

Φ�t� �

� t

0
ϕ�u�du

� λt�
��aw1 �bw2�

2� �a2w1 �b2w2���1� e��aw2�bw1�t�

�aw2 �bw1�2
�(15)

By performing the integration in (12) we get

Var�N�t�� �
2λ��aw1 �bw2�

2� �a2w1 �b2w2��

�aw2 �bw1�3�
1� e��aw2�bw1�t



�λC 2�X�t� (16)

and hence

d
dt

�Var�N�t����
2λ��aw1 �bw2�

2� �a2w1 �b2w2��

�aw2 �bw1�2
e��aw2�bw1�t �λC 2�X��

(17)
and

IDC�t� �
2��aw1 �bw2�

2� �a2w1 �b2w2��

�aw2 �bw1�3�
1� e��aw2�bw1�t

t

�
�C 2�X�� (18)

Observe that limt�∞ IDC�t� � C 2�X�, and if a � b then
��aw1�bw2�

2� �a2w1�b2w2�� � 0 and C 2�X�� 1 mak-
ing Var�N�t�� � λt and IDC�t� � 1, i.e., we get a Poisson
process. (16) or (18) can then be used in (5) or (6) to
obtain the index of variability. It is obvious to see that
limτ�∞ Hv�τ� � 0�5.

Deriving the symbolic expression of Var�N�t�� for
K � 2 is a difficult problem, mainly due to the difficulty
in deriving φ�t�, i.e., performing the following inverse
Laplace transform:

L�1

�
�
�

K�s�
1� � �K�s�

�
where �

�

K�s� is the Laplace transform of the the K-order
hyperexponential pdf of the interarrival times. However,
it becomes trivial when the model parameters (e.g., wi

and αi) are set to numerical values.
1) Numerical Example: Let a � 100. Table I lists

the values of the mean packet rate (λ) and the squared
coefficient of variation of the interarrival times (C 2�X�)
for b � 0�01 and b � 0�0001 for different values of w2.
Note that w1 �w2 � 1. Interesting, the maximum value
of C 2�X� occurs when λ � a

2 . Also, Fig. 4 indicates that
at this value of λ the process attains the widest range
of time scales of high variability, and in this range the
index of variability reaches its maximum value (curve (i),
maximumHv � 0�9988). Observe that this widest range
of time scales of high variability most likely covers all
time scales that impact network performance evaluation
[9]. In this example and for λ � a

2 packets/s, the range

TABLE I

VALUES OF MEAN PACKET RATE (λ) AND SQUARED

COEFFICIENT OF VARIATION OF INTERARRIVAL TIMES (C 2�X�)

FOR THE NUMERICAL EXAMPLE OF THE CASE OF

HYPEREXPONENTIAL DISTRIBUTION OF ORDER TWO: a � 100.

λ (packets/sec) C2�X�
w2 b � 0�01 b � 0�0001 b � 0�01 b � 0�0001

10�3 9.1000 0.0999 1.6522x103 1.9950x103

10�4 50.0000 0.9901 5.0000x103 1.9605x104

10�5 90.9000 9.0909 1.6536x103 1.6529x105

10�6 99.0000 50.0000 197.0202 5.0000x105

10�7 99.9000 90.9091 20.9561 1.6529x105

10�8 99.9900 99.0099 2.9992 1.9607x104

10�9 99.9990 99.9001 1.2000 1.9970x103

10�10 99.9999 99.9900 1.0200 200.9596
10�11 100.0000 99.9990 1.0020 20.9996
10�12 100.0000 99.9999 1.0002 2.9999
10�13 100.0000 100.0000 1.0000 1.2001
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Fig. 4. Index of Variability vs. Time Scale for the Case of
Hyperexponential Distribution of Order Two: a � 100, b � 0�0001,
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of time scales that the packet-count sequence Y exhibits
high variability spans 7 order of magnitude.

In addition, Figure 4 shows that the maximum value
of variability as well as the range of time scales of
substantial variability become smaller as λ� a. Let

τon � in f�range o f time scales o f substantial variability��

and

τo f f � sup�range o f time scales o f substantial variability��

As we can see from these curves, τon gets bigger as
λ approaches a. Although it is not completely shown
in Figure 4, it is not difficult to see that τo f f becomes
smaller as λ � b. Notice that for all τ � �τon�τo f f � the
process looks like Poisson.



7

10
−2

10
0

10
2

10
4

10
6

10
2

10
3

10
4

0.5

0.6

0.7

0.8

0.9

1

τ (s)

a

H
v

10
0

10
1

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

0.5

0.6

0.7

0.8

0.9

aw2

H
v

10
−2

10
0

10
2

10
4

10
6

10
−12

10
−10

10
−8

10
−6

0.5

0.6

0.7

0.8

0.9

1

τ (s)
w2

H
v

10
2

10
3

10
4

10
−4

10
−3

10
−2

0.5

0.6

0.7

0.8

0.9

1

a
b

H
v

Fig. 5. Illustrations of 3D Index of Variability curves generated using the hyperexponential model with the following model parameter
values: (top left) b � 0�0001, w2 � 10�6 (top right) τ � 1000, b � 0�001 (bottom left) a � 1000, b � 0�0001 (bottom right) τ � 1, w2 � 10�7.

Figure 5 depicts 3D Index of Variability curves gen-
erated using the hyperexponential model with K � 2.
Clearly, both Figures 4 and 5 demonstrate that the
hyperexponential model can yield a variety of Index of
Variability curves. Hence, hyperexponential models can
be used to model a wide range of network traffic types.
Although hyperexponential models of order two (i.e.,
K � 2) are capable of generating a variety of Index of
Variability curves, to capture the characteristics of traffic
with multimodal Index of Variability curves it would be
necessary to use higher order (K � 2) hyperexponential
models.

IV. ESTIMATING Hv�τ� FROM TRAFFIC TRACES

The estimation of the Index of Variability curve
from a given traffic trace requires the estimation of
the first derivative of Var�N�τ�� from discrete samples
(Var�N�τi��� i� 1� � � � �n). To do this, we must first find an
analytic function that best fits the discrete variance data.
This in turn requires the use of an interpolation method
such as polynomial-based interpolation, cubic spline and
smoothing spline [23]-[27].

Since we use the sample variances as the estimates
of Var�N�τi��� i � 1� � � � �n, we consider these estimates
of the variances to be noisy samples. The smoothing
spline interpolation methods are known to have optimal

properties for estimating continuous functions and their
derivatives from a finite number of noisy samples [24],
[26], [27]. Note that nonsmoothing interpolation methods
such as cubic spline have the characteristic that the
estimated curve passes through all the given points.
Hence, in case of noisy data, nonsmoothing interpolation
methods yield rough curves and therefore erroneously
high first derivatives.

A. Smoothing Spline Interpolation Method

For a given data series �xi�yi�, i � 1�2� � � � �n, the
smooth function f �x� is the solution of the minimization
problem

1
n

n

∑
i�1

�yi� f �xi��
2 �ξ

� xn

x1

� f �k��2 du� (19)

where ξ is the smoothing parameter and f �k� is the kth

derivative of f . If k � 2, then f is a cubic smoothing
spline.

The first term in (19) is the residual sum of squares,
an indicator of the goodness-of-fit of the spline curve
to the data. In other words, it measures the degree of
fidelity of the smoothing spline function to the data.
The second term measures the roughness of the resulting
smoothing spline curve. The roughness of a function
can be characterized by its curvature. For example, if



8

a function is a straight line, then its second derivative
(and therefore, roughness) is zero. That is, the second
term is a penalty term measuring how close the function
is to a straight line.

The smoothing parameter ξ plays an important role. It
weights two aspects: smoothness and fit. Large values of
ξ give a smoother curve, while small values of ξ result
in a closer fit.

B. Steps for Estimating Hv�τ� from Traffic Traces

We now present a practical method for estimating the
Index of Variability from traffic traces. Assuming that
a given traffic trace is a realization of a second-order
ergodic point process whose variance curve is continuous
and differentiable. We can estimate Hv�τ� of the process
as follows.

� Using the Aggregated Variance method [2] estimate
the variance-time sequence: �Var�N�τi��� i � 1� � � � �n.

� Using an appropriate smoothing spline implementa-
tion estimate the smoothing spline �Var�N�τ�� from�Var�N�τi��� i � 1� � � � �n.

� Using (5) estimate the Index of Variability �Hv�τ�.
We validated the accuracy of this process by estimat-

ing and matching the Index of Variability curves shown
in Figure 4 from synthetically generated data using the
hyperexponential traffic model.

C. Experimental Results

In this section we present some experimental results
to demonstrate the robustness of the method described
in the previous section.

Using the steps outlined in the previous section, we
estimated the Index of Variability curve (Hv�τ�) from
12 NLANR network traffic long traces [22]. The dates
at which each trace was collected and their durations
are listed in Table II. For more information about these
traffic traces, see [22].

We used Matlab’s spline toolbox to estimate all the
smoothing splines. Its smoothing spline implementation
is based on Reinsch’s approach [24], [25]. Based on the
input data, the algorithm computes the optimal smooth-
ing parameter ξ such that the penalized residual sum of
squares is less than a tolerance value ε � 0. In all cases
we used the default value of k (� 2) and ε � 0�0001.

Fig. 6 and 7 show the estimated index of variability
curves from the 12 long packet traces. As expected, all
traces have high variability. Interesting, all curves exhibit
a transient rising behavior. A very important observation
is that the index of variability curve is quite different
from the curves of the Auckland traces. We also observe
that these empiracally obtained curves are similar to

the curves analytically obtained by the hyperexponential
model in Section III-B (see Fig. 4).

V. DISCUSSION

VI. CONCLUSION

All commonly used measures of traffic burstiness do
not capture the fluctuation of variability over different
time scales. Therefore, we developed a novel measure
of variability, called the index of variability (Hv�τ�), that
fully and accurately captures the degree of variability of
a typical network traffic process at each time scale and
is analytically tractable for many traffic models.

We then discussed of how to estimated Hv�τ� from em-
pirically measured network traffic traces. In this paper,
we estimated the index of variability from 12 NLANR
network traffic long traces. The results show that the
traffic variability can exhibit a non-monotonic behavior.
In addition, the results show that the index of variability
can fully capture the multifractal behavior of traffic pro-
cesses, especially at small time scales. The results also
suggest that renewal processes with interarrival times
hyperexponentially distributed are suitable for modeling
such network traffic processes. We are currently working
in developing a method of fitting analytically obtained
index of variability curves from the hyperexponential
model to the curves estimated from traffic traces.
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TABLE II

NLANR NETWORK TRAFFIC TRACES

Trace Data Set Date Collected Duration
(Days:Hours:Minutes)

19991129-134258-0 Auckland-II November 29, 1999 1:14:29
19991129-134258-1 Auckland-II November 29, 1999 1:14:29
19991201-192548-0 Auckland-II December 1, 1999 1:0:2
20010220-226-0 Auckland-IV February 20, 2001 6:4:58
20010220-226-1 Auckland-IV February 20, 2001 6:4:58
20010301-0310-0 Auckland-IV March 1, 2001 9:14:49
20010301-0310-1 Auckland-IV March 1, 2001 9:14:49
20010609-0613-0 Auckland-VI June 9, 2001 4:6:0
20010609-0613-1 Auckland-VI June 9, 2001 4:6:0
20010609-0613-e0 Auckland-VI June 9, 2001 4:6:0
20010609-0613-e1 Auckland-VI June 9, 2001 4:6:0
20020519-525 Bell-Lab-I May 19, 2002 7:0:0
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