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INTRODUCTION TO DSR

• Distributed Speech Recognition (DSR) — client/server application

• Terminal DSR front end with limited compute power

• Common back end speech recognition system

• Speech recognition in adverse environments

• Proposal for an advanced front end (AFE) standard for LVCSR applications



AURORA EVALUATIONS WI007

• Objective — evaluate front ends in adverse environment with an aim
 towards the development of the future advanced front end (AFE)

• Two MFCC front ends — Aurora, and HTK

• Small vocabulary task — TIDigits (11 words)

• Speech recognition technology — HMM-based word models

• Matched Conditions (Average WER across 4 noise types)

Front end
SNR/db

clean 20 15 10 5 0 -5 Average

Aurora 1.5% 2.3% 3.1% 5.1% 12.2% 38.3% 75.4% 12.2%

HTK 1.5% 2.5% 3.1% 5.4% 12.4% 40.2% 76.5% 12.7%

• Mismatched Conditions (Average WER across 4 noise type)

Front end
SNR/db

clean 20 15 10 5 0 -5 Average

Aurora 1.5% 2.8% 4.2% 6.9% 15.3% 39.5% 74.1% 13.8%

HTK 1.5% 3.1% 4.6% 7.4% 16.2% 41.4% 76.2% 14.5%



AURORA EVALUATIONS WI008

• Objective — standardize more
 advanced front end (AFE-WI008)
 than the MFCC WI007 front end

• Extended to Large Vocabulary Task
 — WSJ0 (5000 words)

• Extension of the AFE to include a
 range of European languages —
 SpeechDat-Car noisy sub-sets in
 Finnish, Italian, Spanish, German,
 and Danish

• Performance of WI008 in low noisy
 background conditions not worst
 than WI007, and significantly better
 in demanding environments

• Speech recognition technology — HMM-based word, and sub-word models

• Custom real-time Voice Activity Detection (VAD) algorithm

Low

High

WER

High LowSNR

Performance
Target WI008

Reference
WI007

Mel-Cepstrum



LVCSR FOR AURORA EVALUATIONS

• Wall Street Journal Task (WSJ0) — closed-loop 5000 words, read
 sentences out of the Wall Street Journal Magazine

• WI008 AFE must have a performance improvement of at least 25% over
 the MFCC WI007 baseline

• Two sampling frequencies — 16 kHz and 8 kHz

• Three training conditions to account for model-match and
 model-mismatch into the final evaluation

• Seven additive noise conditions at various SNR’s — clean, street-traffic,
 train-station, car, babble, restaurant, and airport

• Filtering to simulate the frequency characteristics of the terminal device

• Two microphone conditions

• Lossy VQ-based compression algorithm

• Utterance detection (VAD)



SPEECH RECOGNITION OVERVIEW

A noisy communication channel model for speech production and
perception:

Message
Source

Linguistic
Channel

Articulatory
Channel

Acoustic
Channel

Bayesian formulation for speech recognition:

Objective: minimize the word error rate by maximizing

Approach: maximize  (training)

Components:

• : acoustic model (hidden Markov models, Gaussian mixtures)

• : language model (statistical, N-grams, finite state networks)

• : acoustics (ignore during maximization)

The language model typically predicts a small set of next words based on
knowledge of a finite number of previous words (N-grams) — leads to
search space reduction.
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ISIP BASELINE WSJ0 SYSTEM

• 100 frames per second, 25 msec Hamming window

• 12 base FFT-derived mel cepstra with CMS and log-energy

• Energy normalization

• Delta and acceleration coefficients



ISIP BASELINE WSJ0 SYSTEM (cont.)

Training

Data

Flat
Start

sil model
Training

sp model
Training

Force
Alignment

Monophone
Training

Triphone
Training

State
Tying

Triphone
Training

Mixture
Training
(2,4,8,16)

• ~15 hours of WSJ0 training data
 including 83 speakers

• phonetically state-tied 16-mixture
 cross-word triphone models

• ~40 minutes of November’92 WSJ0
 evaluation data used for decoding

• single pass decoding using a
 bigram backoff language model

S0 S1 S2 S3 S4

ae n d

Site Acoustic Model Type WER

CU word-internal / gender-independent 8.1%

UT word-internal / gender-dependent 7.1%

ISIP cross-word / gender-independent 8.2%

CU cross-word / gender-independent 6.9%

LT cross-word / gender-independent 6.8%

CU: Cambridge University, UK
UT: University of Technology, Germany
LT: Lucent Technologies



WI007 BASELINES

Training Set 2
(7138 utt.)

Second Mic.
(3569 utt.)

No noise
(893 utt.)

1 out of 6 noises

20 dB (2676 utt.)
added between 10 & No noise

(893 utt.)

1 out of 6 noises

20 dB (2676 utt.)
added between10 &

Noise
Type 1
(446
utt.)

Noise
Type 2
(446
utt.)

Noise
Type 3
(446
utt.)

Noise
Type 4
(446
utt.)

Noise
Type 5
(446
utt.)

Noise
Type 6
(446
utt.)

Noise
Type 1
(446
utt.)

Noise
Type 2
(446
utt.)

Noise
Type 3
(446
utt.)

Noise
Type 4
(446
utt.)

Noise
Type 5
(446
utt.)

Noise
Type 6
(446
utt.)

Training Set 1
(SI-84)

Sennheiser Mic.
Training Set 3
 (3569 utt.)

Training Database Design

• Three training sets — Training Set 1, Training Set 2, Training Set 3
• 6 noise conditions, randomly chosen SNR between 10 and 20 dB
• 2 microphone conditions — Sennheiser mic. and Secondary mic.
• G.712 filtering at 8 kHz and P.341 filtering at 16 kHz



WI007 BASELINES (cont.1)

Evaluation Database Design

• 14 test sets
• 7 recorded on Sennheiser mic. and 7 recorded on Secondary mic.
• 6 noise conditions, randomly chosen SNR between 5 and 15 dB
• G.712 filtering at 8 kHz and P.341 filtering at 16 kHz

Test Set 1
Sennheiser Mic.
No noise added
Filtered SI-84
(330 utt.)

Test Set 2
Sennheiser Mic.
Car noise added
between 5 & 15 dB
(330 utt.)

Test Set 3
Sennheiser Mic.
Babble noise added
between 5 & 15 dB
(330 utt.)

Test Set 4
Sennheiser Mic.
Rest. noise added
between 5 & 15 dB
(330 utt.)

Test Set 5
Sennheiser Mic.
Street noise added
between 5 & 15 dB
(330 utt.)

Test Set 6
Sennheiser Mic.
Airport noise added
between 5 & 15 dB
(330 utt.)

Test Set 7
Sennheiser Mic.
Train noise added
between 5 & 15 dB
(330 utt.)

Test Set 8
Second Mic.
No noise added
Filtered SI-84
(330 utt.)

Test Set 9
Second Mic.
Car noise added
between 5 & 15 dB
(330 utt.)

Test Set 10
Second Mic.
Babble noise added
between 5 & 15 dB
(330 utt.)

Test Set 11
Second Mic.
Rest. noise added
between 5 & 15 dB
(330 utt.)

Test Set 12
Second Mic.
Street noise added
between 5 & 15 dB
(330 utt.)

Test Set 13
Second Mic.
Airport noise added
between 5 & 15 dB
(330 utt.)

Test Set 14
Second Mic.
Train noise added
between 5 & 15 dB
(330 utt.)



WI007 BASELINES (cont.2)

Training
Sets

Training
Time

(days)

Decoding
Sets

Decoding
Time

(days)

Total
Time

(days)

1 ~10 ~10

1 ~6 ~ 6

11 ~11*10 14 ~11*14*6 ~1034

Computational Considerations

• 11 Baseline training
 conditions and 14 test
 conditions for each training
 set means ~ 1034 days on an
 800 MHz x86 CPU!

Three steps to reduce the CPU requirements

• Reduction in the evaluation set from 330 utterances to 166 utterance —
expected reduction in the  total decoding time by 50%

• Reduction in the number of gaussian mixtures from 16 to 4 —
 expected reduction in total training time  by a factor of 7/9

• Prune the beam widths —
expected reduction in the total decoding time by a factor of 6 with a modest
 degradation in the performance

• Total expected experimental time dropped to ~ 163 days on an 800 MHz CPU



WI007 BASELINE RESULTS

Sampling frequency
reduction — 16 kHz to 8 kHz

• No trend on mismatched
 conditions (Training Set 1)

• Significant degradation on
 Sennheiser mic. on
 matched conditions
 (Training Set 2) —
 attributed to additional
 information provided by
 high sampling frequency

• No degradation on
 perfectly matched
 conditions (Training Set 1
 and Test Set 1) —
 additional information
 provided by high
 frequencies does not
 influence performance
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WI007 BASELINE RESULTS (cont.1)

Utterance Detection — Ideal
endpoints (200 ms of silence
at the start and the end of
each utterance)

• Significant improvement
 in mismatched conditions
 (Training Set 1) —
 “silence” model did not
 model noisy silence and
 hence, increase in
 “insertion” type errors

• No significant improvement
 in matched conditions
 (Training Set 2) —
 “silence” model learnt the
 noisy non-speech
 segments
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Training Set 1, 16 kHz,no utterance detection, no compression

Training Set 1, 16 kHz,utterance detection, no compression

Test
Set

Training Set 1
Without Utterance Detection With Utterance Detection
WER Sub. Del. Ins. WER Sub. Del. Ins

1 14.9% 8.8% 1.0% 5.1% 14.0% 9.0% 0.8% 4.1%
2 65.2% 41.4% 3.6% 20.1% 56.6% 40.0% 3.6% 13.0%
3 69.2% 46.0% 6.5% 16.7% 57.2% 40.7% 6.2% 10.2%
4 63.1% 40.5% 12.0% 10.6% 54.3% 36.7% 10.8% 6.9%
5 72.3% 47.0% 11.2% 14.1% 60.0% 39.2% 13.8% 7.1%
6 69.4% 44.6% 7.8% 17.0% 55.7% 37.9% 8.2% 9.6%
7 73.2% 46.6% 14.1% 12.5% 62.9% 42.1% 13.7% 7.1%



WI007 BASELINE RESULTS (cont.2)

Vector quantization based
lossy compression of
feature-vectors

• No significant degradation
 in mismatched conditions
 (Training Set 1)

• Significant degradation
 on five noisy conditions
 (3, 8, 9, 10, 12) in matched
 conditions (Training Set 2)
 — no consistency

• Two sets of VQ code books
— one for speech sampled
at 8 kHz or 11 kHz, and one
 for speech sampled at
 16 kHz
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Training Set 1, 16 kHz, utterance detection,no compression

Training Set 1, 16 kHz, utterance detection,compression
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WI007 BASELINE RESULTS (cont.3)

Model Mismatch

• Best performance on
 perfectly matched
 conditions (Training Set 1
 and Test Set 1)

• Significant degradation
 in all the mismatched
 conditions (Training Set 1)

• Matched conditions
 (Training Set 2)
significantly better than the
 mismatched conditions

• Under maximum likelihood
 framework, high
 performance can only be
achieved when the test and
 the training conditions are
 similar
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Training Set 1, 16 kHz, utterance detection, no compression

Training Set 2, 16 kHz, utterance detection, no compression
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Training Set 2, 8 kHz, utterance detection, no compression

Training Set 1, 8 kHz, utterance detection, no compression
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WI007 BASELINE RESULTS (cont.4)

Microphone Variation — Sennheiser Microphone vs. Secondary Microphone

• Sennheiser HMD-414 is a high quality close-talking microphone whereas
 the second microphone is one of the 18 common microphone types

• In general, the Sennheiser microphone performed significantly better than
 the second microphone condition

• Largest degradation observed on clean test condition on Training Set 1

• Less severe but still significant degradation on Training Set 2 — value in
 exposing the models during training to second microphone condition

Performance (Without Compression)

Training Set Test Set

Set
Sampling
Frequency

Utterance
Detection

1
(Sennheiser,

Clean)

8
(Second,

Clean)

2
(Sennheiser,

Car)

9
(Second,

Car)

1 8 kHz Yes 16.2% 37.4% 49.6% 59.7%
2 8 kHz Yes 18.4% 29.7% 24.9% 37.3%



WI007 BASELINE RESULTS (cont.5)

Additive noise

• 7 test conditions — clean,
 street-traffic, train-station, car,
 babble, restaurant, and airport

• Training sets SNR randomly
 chosen between 10 - 20 db

• Test sets SNR randomly chosen
 between 5 -15 db

• Severe degradation on all noisy
 conditions

• Severity of the degradation can be
limited, though still significant, by
 exposing the models to noise
 conditions during the training
 process (Training Set 2)
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AURORA EVALUATION RESULTS

• Two participating sites
 * Motorola-FranceTelecom-Alcatel (MFA)
 * Qualcomn-ICSI-OGI (QIO)

• MFA advanced front end chosen as WI008 standard

• ~30% relative improvement over the baseline WI007

Performance Summary

Site
Training Set

Test Set

Sennheiser
Microphone

Secondary
Microphone Average

WER
Set

Sampling
Frequency

Clean Noise Clean Noise

Base 1 8 kHz 15.4% 49.4% 36.6% 59.9% 58.1%
MFA 1 8 kHz 15.0% 36.4% 23.1% 44.8% 37.5%
QIO 1 8 kHz 16.5% 42.5% 28.7% 50.7% 43.2%

Base 2 8 kHz 20.7% 26.4% 30.9% 38.7% 41.0%
MFA 2 8 kHz 17.2% 30.6% 22.7% 36.1% 31.4%
QIO 2 8 kHz 20.8% 32.7% 23.6% 38.3% 33.6%



STATE OF THE ART

Commercial front ends use adaptive noise compensation

Fast
Fourier

Transform

Noise
Estimation

Spectral
Subtraction

Filterbank
Analysis

speech

Discrete
Cosine

Transform

Log
Spectrum

features

Advanced front ends use a variety of techniques including subspace
methods, normalization, and multiple time scales

Fast
Fourier

Transform

Weiner
Filter

Channel

speech

Mean/Variance
Normalizationfeatures

Mel
Transform

LDA

VAD

VAD

∆
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CONCLUSIONS

• Advanced front end standardization is an elaborate effort!

• Computational resources is a big issue with LVCSR

osing models to different noisy conditions and microphone conditions
roves the speech recognition performance in adverse conditions

tor Quantization based compression is robust in DSR environment

kHz sampling frequency results in significant improvement only in noisy test
nditions

ure directions:
nal Processing algorithms vs. adaptation in maximum likelihood framework
• Exp
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