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APPLICATIONS OF HIGH PERFORMANCE STATISTICAL MODELING ....

EXECUTIVE SUMMARY

We had developed an extensive image database and a Principal Components Analysis (PCA)
image classification system by the end of last year, which represented the major accomplishments
for our efforts on the Scenic Beauty Estimation (SBE) problem. Since then, we have continued to
improve that SBE system. Our focus has now shifted from SBE classification to object
recognition, a more challenging task.

We incorporated the NTSC YIQ scale and the colors brown and yellow as features, because they
are also important factors in scenic image analysis. These YIQ features, however, have failed to
improve performance. While the new color features of brown and yellow helped improve the
performance of the PCA system. For example, blue and brown combined gave us our best result
of 31.4% misclassification rate on the first data set of Pre-Phase 01 images. The improvement was
justified by the fact that brown and yellow play a very important role in human perception of the
scenic beauty of forestry images.

We investigated two other algorithms: Independent Component Analysis (ICA) and Support
Vector Machine (SVM). These algorithms have produced excellent results in many classification
problems. We implemented ICA in MATLAB, a useful mathematical software tool. For SVM, we
took advantage of a public-domain progra8Mlight ICA combined with the feature set of

“rgb” (red + green + blue) gave us an overall error rate of 33.4% on Pre-Phase 01 data. SVM gave
an average of 32.2% error on the same database when we chose the feature set to be “rgb + long
lines.” Compared with the best error performance of the PCA system, which was 37.7% achieved
by using a feature vector of “rgb + entropy”, the improvement was significant.

Another objective of this project is to recognize important objects from a forestry scene. As a
precursor to real object recognition, we focused on the image segmentation problem. We
developed a front end tool, ISIP Object Labeler, to aid in manually segmenting a total of 1784
images. Then, before we proceeded to implementing an automatic segmentation system, we
carefully designed two kinds of preliminary experiments to see how well the system would work.
For the first one, we split images horizontally into three equal strips and applied our PCA system
on only one of the strips. It was encouraging to observe that we obtained much better results on
some specific data sets, such as an error rate of 27.8% generated by examining the top region
using features of “rgb” combined with entropy on data set 2. In the second kind of so-called
“cheating” experiments, where we trained and tested the images on the regions manually
segmented out, although performance did not improve significantly, we did find better
classification results on some specific regions.

We built the automatic segmentation system on the basis of the software resources we created for
the classification task. Using the same object-oriented philosophy, we added new classes and
changed the process flow accordingly. A significant difference of this system from the
classification system is that we are now processing images at a block level. So far, we have
implemented a first draft of this segmentation software. The best evaluation result was a 61.4%
error performance. A careful analysis revealed that the high error rates were due to a bad classifier
for foliage blocks. Therefore, we currently are searching to find a good foliage classifier to
improve the system’s performance. A more careful analysis of the effect of block sizes will be
carried out. During the next year of the project we expect to use more powerful classification
paradigms like Hidden Markov Models to aid automatic segmentation and object recognition.
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ABSTRACT

The objective of this project is to automate the extraction of diversified information from forestry
images in order to help analyze forest structure. By the end of last year, we had developed an
extensive image database and an image classification system dealing with the problem of Scenic
Beauty Estimation (SBE) [1]. Since then, we have worked mainly in two directions. One direction
involved improving the Principal Components Analysis (PCA) classification system we already
developed. The second direction involved implementing an automatic image segmentation
system. In the first portion of this research, we integrated new features of NTSC YIQ [2], brown
and yellow [3] into the system. We also investigated Independent Component Analysis (ICA) and
the Support Vector Machines (SVM) [4]. In the second part of this research program, we
developed a manual segmentation tool and created a manually segmented image database with the
aid of that tool [5]. Based on this database, we implemented an automatic image segmentation
system. Now we are in the process of improving that system.

1. INTRODUCTION

The need for automatic determination of the scenic beauty of a forest scene has been the prime
source of motivation for this project. In our prior efforts, a PCA system was built, where
commonly used features like RGB colors, entropy, number of trees, etc., were used to classify
images according to their scenic beauty quality. Meanwhile, an extensive image database has been
developed to assist in the classification [1].

This project is a continuation of our previous work. OUr primary goal is to expand the research
scope and use various signal processing techniques to extract automatically more diversified
information from forestry images. To this end, we focused our efforts mainly on two aspects.
First, we investigated some new features and several advanced pattern recognition algorithms in
an effort to improve the PCA system we developed. We incorporated YIQ, another common color
model widely used in television broadcasts, which is different from the RGB model we used
before. We adjusted the normal method of histogram computation to meet the special case for
Y1Q and used the histogram as features. But the outcome from these features was not as good as
what we obtained from the RGB model. We also computed brown and yellow colors by
combining red, green and blue in some particular manner according to the additive color theory.
As shown in the research paper [7], these colors are determinative in human perception of forestry
scenery. Our experiments proved this by yielding quite a few really exciting classification results.

With respect to algorithm research, we investigated Independent Component Analysis (ICA) and
the Support Vector Machines (SVM) [4]. ICA is similar to PCA in its linear property, but is
superior in that it is not constrained to be orthogonal. We predicted that this orthogonal-free
property would help to produce a better discrimination among the features, hence a better
classification. This was confirmed by the significant drop in error classification rate provided by
our ICA system. Another promising algorithm widely used in image classification problem is
SVM. It was giving excellent performance in nonlinear problems such as human face recognition.
Since we believed that this SBE problem would more likely be nonlinear in nature than linear, we
built an SVM system with the aid of a public-domain software t&WVMligh). The overall error
performance was indeed much better than that of the PCA system. It was interesting to note that
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there were only slight differences between the performance of ICA and SVM.

Presently, our efforts are focused on recognizing important objects from a forest scene to assist in
scenic beauty estimation, as well as forest structure analysis. Our initial attempt involved
segmenting images automatically. To prepare necessary data, we developed a segmentation tool
with which we manually segmented the USFS database of 1784 images into various regions
typical of any forestry scene, such as trees, foliage, bushes, grass, sky, and background sky. Then
we designed a series of cheating experiments using these manual segmentations as a first step
toward the automatic segmentation. We observed some outstanding performance of the SBE
system on that manual segmentation data, which implied promise for a successful automatic
segmentation system. Consequently, we implemented a block-level classification system, which
was capable of classifying image blocks into one of the six regions we defined in manual
segmentation. The system was worked reasonably well, although lots of important issues need to
be settled before it will perform in a satisfactory manner. We are currently in the process of
improving this automatic segmentation system. We expect to make progress towards a real object
recognition system in the near future.

2. SCENIC BEAUTY ESTIMATION

One of the major goals of this project is to assess automatically the scenic beauty quality of
forestry images. We had done extensive research on this topic previously. Our accomplishments
on this can be best represented by the PCA classification system and the USFS image database we
created. However, there were still some important issues remaining beyond those achievements;
hence, there is a need to look into those issues and, accordingly, to strengthen the power of the
existing system.

2.1. New Features

For the new features, we mainly studied the color model of YIQ and the color features such as
brown and yellow. We did these things because colors are supposed to be one of the most
important features for forestry image analysis.

2.1.1. YIQ

We built our PCA classification system on the commonly used RGB scale. To study the benefits
of using alternate color models, we integrated the luminance-chrominance scale of YIQ as
features. YIQ is widely used in television broadcasts, where Y stands for luminance, | for hue,
and Q is the saturation value.

We started by computing the YIQ values for all images across the database. We observed from the
corresponding feature distributions that the | and Q values are concentrated in a very small portion
of the possible ranges they could occupy. This is shown in Figure 1 for the case of I. Clearly the
histogram depicts a non-uniform, Gaussian like distribution in a small range. If we do not take
this into consideration when we extract the YIQ features, we would run into intractable
computational problems in PCA.

As a solution to this problem, we compute the YIQ values on an exponential scale, and then
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Figure 1. Histogram of | values based on the USFS training data. Note the narrow range actually occupied
by the | feature.

0.4 0.2

generate a histogram of these exponentially scaled values to determine their range. A histogram
for the YIQ values is recomputed on the basis of this range. This, however, does not guarantee that
all the bins in the histogram are non-zero, which could potentially cause matrix-inversion
problems. We employed Gaussian smoothing to alleviate this problem.

The system with YIQ values, alone, as its feature set generated a 51% classification error on the
evaluation data set 1 of the Pre-Phase 01 images. As a comparison, the counterpart system, using
only RGB as features, produced an error rate of 40% for the same data set. Most likely, this is an
indication that the YIQ model may not be a better choice than the more commonly used RGB
scale. However, further analysis is required to evaluate the efficacy of these YIQ features for
scenic beauty estimation.

2.1.2. Brown And Yellow

Colors are supposed to have important effects on human perception of the scenic beauty of an
image. In [7] the following rules have been demonstrated: The color green is most likely to appear
in a summer scene, yellow in fall, but blue and brown have the highest chance to show in winter.
In non-winter seasons, the presence of green and yellow colors enhances the scenic beauty of a
forest scene, while blue and brown do the opposite. From these results, it is evident that brown
and yellow are also key color features in evaluating the scenic beauty quality of an image.
Therefore, we deem it necessary to add the brown and yellow features into our color measurement
scheme and evaluate its effectiveness on the SBE problem.

We computed the histogram for the brown and yellow colors, as we did for red, green and blue,
previously. To calculate the intensity of brown and yellow for a given pixel, we take advantage of
the theory of additive color synthesis [8], which allows us to create any color by mixing the three
primary colors, red, green, and blue, in various proportions.

Particularly, we generated the color brown by mixing one part blue, one part green, and four parts
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red. Similarly, we obtained yellow by mixing equal parts of red and green. Since we desired to
measure the intensity of these colors, as we did in previous experiments for the primary colors, we
implemented a normalized version of the mixing formulae:

brown = %xblue+%><green+gxred (1)
_1 1
yellow = zxred+§><green (2)

where red, green and blue stand for the corresponding intensity values of the given pixel.

We investigated the effects of these new features on our PCA image classification system. We
evaluated various combinations of features involving brown and yellow, and compared these to
some existing baseline results. These results are shown in Table 1. We believe it is a very
encouraging sign that brown and yellow, combined with other primary colors, produce good
classification results. For example, blue and brown in combination gave us our best results yet for
a PCA-based measure on the first data set. We believe this can be attributed to the fact that blue is
an indication of the presence of sky, while brown is related to the presence of trees in the image.

Although the excellent results on the first data set did not hold up well over the entire evaluation,
we believe this probably resulted from the varied nature of the test sets with respect to scene
composition. Therefore, if we are doing classification on regions of similar scene composition, we
will benefit from these new color features. Obviously, we will go under such restrictions when we
do image segmentation.

Features Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
red + green + blue 40.3 42.4 38.1 33.1 38.5
yellow 54.7 38.6 45.6 67.5 51.6
brown 37.7 38.6 41.9 55.0 43.3
yellow + brown 40.3 46.2 40.6 45.6 43.2
rgb + yellow + brown 39.6 39.9 394 66.9 46.5
blue + brown 314 50.6 35.0 56.9 43.5
rgb + brown 47.2 46.2 48.1 38.8 45.1
grn + blue + ylw + II 39.6 38.0 45.0 53.1 43.9
grn + blue + ylw + brn + || 39.6 52.5 48.1 40.0 451
blue + brn + | 37.1 52.5 331 58.1 45.2

Table 1. Results of SBE evaluations using brown and yellow.
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2.2. New Algorithms

The pattern recognition algorithm involved is one of the most important elements of the image
classification system. Naturally, we would like to test other algorithms than principal component
analysis in the hope of finding some that give better performance. We studied several advanced
algorithms and chose Independent Component Analysis (ICA) and the Support Vector Machine
(SVM). We believe both algorithms are promising for the SBE problem under discussion.

221. ICA

Before we describe the principles of ICA, we would like to discuss PCA briefly, because it is
closely related to ICA and it is used in the baseline system which we will use for performance
comparison between various systems.

PCA is a statistical normalization approach. It is a straightforward method of classification using a
linear classifier; hence, it has the advantages of linear classifiers, such as simplicity of
implementation and robustness to poorly estimated statistical models [9]. In PCA, it is assumed
that the first principal component of a sample vector lies parallel to the direction along which
there is the largest variance over all samples. This direction corresponds to the eigenvector
associated with the largest eigenvalue. Kie principal component is chosen to be the linear
combination of the input features that has the largest variance, under the constraint that it is also
uncorrelated to the previoksl principal components. This approach, depicted in Figure 2, works
well when the direction along which there is maximum variation also contains the information
about the class discrimination.

The principle behind ICA [10] is very similar to that of PCA, but the main difference is that the
resulting transformation is no longer orthogonal. This is depicted in Figure 2. Similar to PCA,
ICA finds a linear coordinate system for the data, transforming it using a linear matrix
transformation. Hence, the complexity of the runtime analysis is equivalent to PCA.

However, unlike PCA, the transformation is free to be non-orthogonal, as shown in Figure 2.
Furthermore, the computation of this transform involves higher order statistics of the data. In the
PCA case, which involves an underlying assumption that the data is multivariate Gaussian, only

CA2
PCAl1

I
A

Figure 2. A comparison between transformations found by PCA and ICA when the data is uniformly distrib-
uted within the diamond-shaped region.
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the mean and covariance (second-order statistics) are used.

Our approach to finding the ICA transformation, described in [11], involves finding a linear

transformationW , that minimizes the mutual information of the transformed data. Since a

closed-form solution is not tractable, we use a stochastic gradient ascent algorithm. When the
nonlinear function is the same (with respect to scaling and shifting) as the cumulative density
functions of the independent components, it can be shown that a nonlinear infomax procedure
also minimizes the mutual information between the components of the transformed data.

However, in practice, we must pick a nonlinear function for the stochastic ascent without any
detailed knowledge of the probability density functions of the underlying independent

components. Our procedure is to maximizgg(u)] , Whage) is a sigmoidal function, and to

assume the pdf's oft are super-Gaussian (similar to a Gaussian, but more “peaky” with longer
tails). This approach leads to an ICA solution when such a solution exists.

The specific form of the stochastic gradient ascent that is used involves a learning rule that
changes weights according to the gradient of the entropy [11]:

OH(Y)\a/Tans — T
AWD_GW W W = (I +yu )W

. o~ 90y, a9 0y . _ —u;, 1
in whichy, = v, - a_uilna_ui iscomputed a§; = 1-2y; ,and = (L+e )

Our implementation of ICA was based on the information maximization theory. If the output
entropy is maximized, then the components of the output vector must be statistically independent.

Assuming we have a training séix} . We need to find a transformation W x , with the
properties mentioned above. First, the data is prewhitenefhdy— 2W,({ x} — X0 , Where

-1/2 - T . . . . .
W, = xx'0 “. The matrix is then initialized to the identity matrix, and trained accordingly.

We use a context-dependent transformation in this case. Hence, three separate transformations are
trained, and the test images are classified by using a class-specific Euclidean distance
computation in the transformed space.

We evaluated ICA on the four standard subsets of the 637 Pre-Phase 01 images as we did for all
previous evaluations. Among the 45 features (new features discussed earlier not included), we
examined the following combinations:

« all: all 45 features

 rgh: red + green + blue

e rgb + II: rgb + long lines

e rgb + Il + ent: rgb + Il + entropy

e rgb + Il + fract: rgb + Il + ent + fractal dimensions.
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Features Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
all 35.2 335 31.9 33.1 334
rgb 34.6 33.5 32.5 33.1 334
rgb + Il 34.6 335 331 331 33.6
rgb + Il + ent 34.6 34.2 33.1 32.5 33.6
rgb + Il + fract 35.9 33.5 325 33.1 33.8

Table 2. Error performance of ICA on all four evaluation data sets.

The results are shown in Table 2. The best error rate achieved by ICA is 33.4%, using a simple
combination of R, G, and B. This is extremely promising in that it utilizes the simplest feature
vector, and seems to learn all other derived information, such as entropy and fractal dimension.

2.2.2. SVM

A support vector machine (SVM) [12] is a new technique for classification. The main objective of
this technique is to construct an optimal hyperplane, which uses a small part of the training set as
support vectors. If the training vectors are separated without errors by an optimal hyperplane, the
expected error rate on a test sample is bounded by the ratio of the expected number of the support
vectors to the number of training vectors. Since this ratio is independent of the dimension of the
problem, good generalization is guaranteed if we can find a small set of support vectors.

First, we will have to look at the simplest case: a linear machine trained on separable data.
Suppose we have 2 classes. Labeling the training data as

(x,yi},i=1,...,1, yoO{-1, 1}, x{d Rd, we would like to find a separating hyperplane

wlX+ b= 0, wherew is normal to the hyperplane. This hyperplane separates the positive

examples from the negative ones. Let @l.) be the shortest distance from the separating
hyperplane to the closest positive (negative) example, thed.ds called the “margin” of the
separating hyperplane.

Here, the support vector machine just looks for the separating hyperplane with the largest margin.
This has been shown [13] to be equivalent to the following problem. Given the inequalities:

Yi(x, Ow+b)-1=>0 Ui

find hyperplanes of I X [(W+b =1 and H,: x;0Ov+b = -1, which give the maximum

margin by minimizingllvvll2 , Subject to the constraints shown in the inequality above.
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To solve the problem wusing the Lagrangian method, we have to maximize

_ 1 , , : _
Lp = IZai —EZaiajyiiji [X; with respect toa; , subject to constralisaiyi =0 andthe

positivity of a; [13]. The solution is given byw = ZO(iyi X;
|

Once a support vector machine has been trained in this way, a test vector may be classified by
simply determining on which side of the decision hyperplane it falls. For non-separable data, the
constraints should be modified as follows:

X, W+ b>1-¢; y, =1
X, W+ bs—1+¢; y, = -1

§>0 i

The solution is similar to that described previously.

The above SVM algorithm on a linearly separable data set can be extended to nonlinearly
separable data. The general idea is that we can map the nonlinearly separable data into a higher
dimensional space in which we can still do a linear separation on the mapped data. To do the
mapping, we need to find a suitable “kernel function.” A detailed discussion of this approach is
found in [13].

Our SVM implementation follows the three-way classification strategy similar to what was done
with ICA. One classifier is trained for each of the three classes. Each classifier is trained by
considering the in-class data versus the rest of the data. For each test image, we calculate the
distance of its feature vector to each of the three classifiers. Classification was achieved by
comparing the distances of each image’s vector from the three hyperplanes.

The SVM implementation was accomplished using the public-do®¥Mlight[8] package. The
radial basis function kernel was chosen because it was found to give the best performance on a
number of related classification tasks.

To facilitate a comparison between all the algorithms, we evaluated SVM the same way we did for
ICA, i.e, we chose the same evaluation data sets and feature sets. The results are described in
Table 3. We achieved a 32.2% overall error rate by SVM, using the feature combination of rgb
plus long lines. We also noted that the results on this feature set display a very small variance
across all the data sets. This indicates that SVM makes effective use of long line information in
combination with RGB.

A comparison of ICA and SVM to the baseline PCA system is shown in Figure 3. We see from the
plot that ICA and SVM provide improved performance over PCA. The best overall error
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Features Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
all 34.6 34.2 31.2 31.9 33.0
rgb 35.2 34.8 325 325 33.8
rgb + Il 321 32.3 31.9 325 32.2
rgb + Il + ent 35.2 34.2 31.9 325 334
rgb + Il + fract 35.2 35.2 325 31.2 33.5

Table 3.Error performance of SVM on the same four data sets.

50.0 T
PCA
ICA

SVM

Error Rate (%)

ALL RGB RGB+LL RGB+LL
+ENR

Figure 3. A comparison between ICA, SVM and PCA on evaluation set 1 of the Pre-Phase Oldata.

performance of ICA is 33.4%, while for SVM, it is 32.2%. Both are superior to the best results we
have obtained with PCA, which is 37.7% with rgb combined with entropy as the feature set.
Neither ICA nor SVM is better on all experimental conditions, however. This suggests there is
stil some work ahead on dimensionality reduction and feature set enhancement. These
encouraging results also suggest a possible system, where we may combine these two techniques
to produce a better classification scheme. By using ICA as a front-end to SVM, we will be able to
supply optimally separated distributions to the SVM, thereby constructing a better nonlinear
decision region. We expect that the classification capability of the combined system will be a
great improvement over the system using either technique, alone. It is important to note that, as
encouraging as these numbers are, the performance of intelligent guessing (always guess msbe) is
still extremely close to our best classification system.

INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING AUGUST 15, 1999



APPLICATIONS OF HIGH PERFORMANCE STATISTICAL MODELING .... PAGE 10 OF 31

3. MANUAL SEGMENTATION

Since most object recognition algorithms need transcribed training data to build statistical models,
we segmented the digital images into different regions and labeled these regions as tree, bush,
grass, etc. We developed a software tool to facilitate this task. A total of 1784 images, consisting
of all USFS images processed to date, has been manually segmented. This large database of
segmented images will form the basis for the development of advanced object classification
algorithms. As a first step, we designed some preliminary experiments to gain insight into the
image segmentation problem.

3.1. Manual Segmentation

We have developed a segmentation tool named Image Object Labeler (I0OL). This tool was rapidly
prototyped in Tcl/Tk, and is fairly portable across Unix and PC environments. It was designed to
allow a user to select a certain type of object, and to draw a closed polygon around the region
defining that object. Each image can be labeled multiple times. A list of images is traversed using
a scrolling dialog box. This allows the user to iterate on a set of images until all segmentations are
consistent. An example of a labeled image is shown in Figure 4.

For now, we have defined six labels for the image transcription. These labels which are necessary
for transcribing forestry images are described in Table 4.

Buta File: Axip/dviunfe_ 1 magi ng et s repeent ot bonsrw_pham /o ooy bl plid A n_ o000 b0 _ b3 poal_sidS_ 013191, dat i-'-'-"'-:'-'-'—"="--1'"

w1055 e
I - FE . e

Figure 4. An example of a labeled image using our segmentation tool.
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Label Description

tree a woody perennial plant having a single, usually elon-
gated, main stem, generally with few or no branches
on its lower part

foliage a cluster of leaves, flowers, and branches

bush a low densely branched shrub or a close thicket of
shrubs suggesting a single plant

grass grass or land covered with growing grass, or other
green-colored ground cover

sky a region typically containing sky and few obstructions
such as trees; strictly limited to the top of the image

background sky a region with sky in the background and other objects
in the foreground, but still clearly identified as sky

Table 4. The six categories used to label images.

The segmentation process begins by creating a list of images to be segmented. The button named
“load” is used to load both the image file list to be labeled and the data file list which will keep the
results of the labeling. When an image is chosen and displayed, we can label objects as listed at
the bottom of the window. As an example, to label a tree in the image, just click the button named
“tree” first, then proceed to draw a polygon around the tree. After finishing labeling all objects in
the image, use the “save” button to write the data into the corresponding data file. Then click
“next” to get the next image file in the file list, or “previous” to return to the previous image file.

In the labeling process, we use “clear” to clear all the labels and use “revert” to go back to the
most recently saved file. The “view output” button provides a corresponding look at the output
data. As we can see, the user interface is simple and intuitive.

The time needed to segment an image varies from image to image. For some simple images which
just contain one or two objects, such as a foliage plus a background sky, only 2 minutes are
required. On the other hand, for the really complicated images, it takes as much as 8 minutes to
label all the objects in one image. The average time used to segment an image is 4 minutes or so.
This implies it will take about 120 hours to segment the entire database, or approximately 6 weeks
at 20 hours per week.

An example of the data file format is shown in Figure 5. The data file begins with the name of the

image file, followed by the object name, then the coordinates of all the label points used to mark
this object. There can be multiple instances of any object in the file, and the order of the objects is
arbitrary (each object is written in the order it was created). The description of an image is

terminated by either a new image file name or the end of the file.

With the tool introduced above, we manually segmented all USFS image data that was provided.
The images are located under the directories /isip/d00/usfs_imaging/data/pre_phase_01/ and /isip/
d00/usfs_imaging/data/phase_01/, respectively. The first set consists of 637 images taken from
the Winona Ranger District. The latter set consists of 1147 images taken from the Ouachita and
Ozark National Forest. There is a total of 1784 images.
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/isip/d00/usfs_imaging/data/phase_01/cd_0012/img0002.ppm
Class tree

954 32

954 386

1106 30
Class foliage
186 32

Figure 5. An example of the output file format used by the segmentation tool to store image segmentation
information. A simple ASCII file format is used for portability.

3.2. Preliminary Experiments

Once we have created the manually segmented image database, we are ready to begin
development of a system capable of leveraging our manual segmentations. This is being done in
two steps. First, we want to assess the effectiveness of this information through “cheating”
experiments where we estimate scenic beauty given knowledge of the segmentations. Second, we
will develop schemes to automatically segment the images, and evaluate the accuracy of these
schemes based on the manually derived information. Here, we review progress on the former task.
We leave the automatic segmentation for the later part of this report.

In our manual segmentation approach described previously, each image was segmented into
regions of similar appearance, and assigned one of the following tags: tree, foliage, bush, grass,
sky and background sky. Given the striking visual differences between most of these regions, we
believe that if we build region-specific models, and classify images according to these regions, we
will attain a significant improvement in our ability to automatically classify forestry images.
However, instead of proceeding directly to implementation of such a segmentation-based
scenario, we first need to evaluate the theoretical limits such approaches can achieve. We refer to
this type of experiment as a “cheating” experiment, since we assume the manual segmentation
information is already known to the system during the classification process.

To implement a cheating experiment, we need to incorporate manual segmentations into the
system. This requires non-trivial modifications to our software. Hence, we designed a simple
image splitting scheme as a first step: each image was equally split into three horizontal strips.
The top region was designated “sky.” The middle region was designated “trees and foliage.” The
bottom region represented “grass and ground.” We evaluated our ability to classify each image
solely based on one of these regions using the feature vector “blue + brown.” We compared these
results with those generated on the non-split images, or the entire images. The comparisons are
shown in Table 5. We still used a PCA based approach for all these experiments.

Observe that the average performance across all data sets for the top region is slightly better than
a comparable result for the entire image. In other words, by examining only the top one-third of
each image, using features of blue and brown, we were able to achieve our best overall
performance. Clearly, this approach was doing a better job of weighting the relative importance of
such features as sky and brush.
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Region Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
top 44.0 38.0 43.8 45.0 42.7
middle 37.7 46.1 71.3 60.0 52.5
bottom 50.3 354 53.1 42.5 45.3
entire 31.4 50.6 35.0 56.9 435

Table 5. Results of SBE evaluations using “blue + brown” features on equally split image regions.

To further explore the significance of this result, we continued experiments using region-specific
features. For each region, we chose features believed to be relevant to the type of imagery
expected in that region. These experiments are summarized in Tables 6-8. It is interesting to note
that we obtained much better results on some specific data sets. For example, by examining the
top region using features of rgb combined with entropy, we achieved a 27.8% error rate on data
set 2, which is the best performance obtained on any data set thus far. Building on this
encouraging result, we chose the best error rates for each region and compared them with the best
average error rate obtained previously for the entire images. This is summarized in Table 9.

Obviously, the best results of this region-specific measurement scheme were comparable to those
of our previous best systems that processed the entire images. Though this approach was a very
simple first step, we believe it justifies examining segmentation-based approaches, or the cheating
experiments mentioned earlier, in more detail. To carry out the cheating experiments, where we
classify images only on a specific region prescribed by the user, we need to add the following
capabilities to the software: reading in the segmented regions as polygons; running evaluation
only on the prescribed region. Therefore, we designed and implemented a polygon class, which

Features Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
blue 484 31.6 431 50.0 43.3
rgb 51.6 304 66.9 36.9 46.5

rgb + ent 54.1 27.8 30.6 35.6 37.0

Table 6. Results of SBE evaluations using only the top region of each image.

Features Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
green 49.7 58.9 65.0 60.6 58.5
brown 44.7 57.0 66.9 51.9 55.1

rgb 434 40.5 39.4 41.9 41.3

rgb + ent 42.8 40.5 31.3 40.6 38.8

Table 7. Results of SBE evaluations using only the middle region of each image.
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Features Data Set 1 Data Set 2 Data Set 3 Data Set 4 Average
brown 37.7 65.8 46.3 41.3 47.8
ylw + brn 44.0 52.5 45.0 41.3 457
rgb 45.3 32.9 41.3 331 38.2
rgb + ent 38.4 32.3 43.8 36.9 37.9

Table 8. Results of SBE evaluations using only the bottom region of each image.

Region Features Error Rate
top rgb + ent 37.0
middle rgb + ent 38.8
bottom rgb + ent 37.9
entire rgb + ent 37.7

Table 9. A comparison of performance using region-specific measures to a baseline system.

can load the manual segmentation data and determine if a given pixel is inside a certain polygon
or not. Further, we modified the image_analysis class to incorporate this polygon class, which

mainly involved extension of the computational methods. Also, we made other necessary changes
to the driver program and the parameter files to support experimentation on either a specified
region or an entire image.

We carried out a series of cheating experiments with several combinations of features. The
experiments were based on data set 1 of Pre-Phase 01 images. Overall, running our standard SBE
classification system on a particular region, such as background sky, produced worse results than
running the same system on entire images did. This is clearly revealed by the results in Table 10.
The reason is most likely that the feature sets we tested were not doing as good a discriminating
job on the specific regions as they did on the entire images. What is interesting, however, is that
using a feature of blue plus brown on regions labeled background sky (bgsky) halves the errors for
HSBE image classification. Here, we show the confusion matrix generated from this experiment
in Table 11. For comparison, we also present in Table 12 the corresponding matrix we got from
the experiment with the same feature set on entire images. Such significant reduction in errors for
individual classes was also found in other evaluation experiments using different feature sets
(Refer to the appendix for detailed information.). This observation shows that, if we can use
region-specific images, and do a good job of automatically segmenting images, we can probably
do much better in characterizing the images. With proper region-specific classifiers, we believe
that this 50% reduction in error rate can hold up. This encouraged us to proceed to the
implementation of an automatic image segmentation system.
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Features Tree Foliage Bush Grass Bgsky Entire Image
rgb + ent 47.8 46.5 52.8 47.2 55.3 39.6
rgb + ent + |l 48.4 49.1 51.6 46.5 57.2 421
blue + brown 45.9 45.3 54.7 42.1 56.6 31.4

Table 10. Results of the cheating experiments.

Automatic LSBE MSBE HSBE
LSBE 5 12 0
MSBE 19 45 9
HSBE 4 46 19

Table 11. Confusion matrix for the cheating experiment on background sky region with blue plus brown as
features. Note the errors for the HSBE image classification decreased by half.

Automatic LSBE MSBE HSBE
LSBE 2 2 0
MSBE 24 97 18
HSBE 2 4 10

Table 12. Confusion matrix for the experiment on entire images with blue plus brown as features.

4. AUTOMATIC SEGMENTATION

Automatic segmentation of forestry images is a very important step in the progress towards our
goal of object recognition. We were supposed to build up the automatic system on the basis of all
previous work on manual segmentation. We first implemented the system at a block ésusk
processed the images block by block, classifying each block into one of the prescribed regions.
The evaluation results indicated that much improvement was needed to get the system working as
we expected. Currently, we are in the process of system analysis and improvement.

4.1. Software Design

Our initial attempt at the automatic segmentation task is to segment an image on a block-by-block
basis. First, we estimate models at a block level for all six regions available from the manual
segmentation. Then we classify each block into one of the six regions. Though we are still using
the PCA algorithm for this block classification, we need to revise our PCA code, because we
implemented the algorithm on an image-by-image basis previously, and that made a somewhat
significant difference in the process flow of the software.
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To keep as much consistency with the previous code as possible, we modified the class of
image_analysis slightly, overloading some computational methods to deal with the case of block-
level computation. And we designed a new class named image_segmentation. This class is
responsible for all issues specific to block-based training and testing. We also introduced the
concept of windowing into the segmentation system. After the image under investigation has been
divided into equally-sized blocks, or frames, we window each frame with a rectangular window.
For simplicity, we zero-pad those windows which happen to fall on the edge of the image. This
windowing capability has been integrated into the image_segmentation class. Another issue
involved in block-level computation is how we determine if a block belongs to a specific region or
not. This concerns us because, in many cases, there will be only part of a block falling into the
supposed region. What we do in this system is to simplify the problem, deciding only if the block
center is inside the region. We also had to design a new utility named segment_image, by which
we were able to accomplish the automatic segmentation task. To show the segmentation results
intuitively, we write the block classification results into an image file, where we display colorful
blocks, with each color mapping to one specific region.

4.2. Performance

To evaluate the performance of the segmentation system, we need to be concerned about not only
the feature and data sets as we did for SBE classification system evaluation, but also the
windowing issue, as well. For an initial test, we set a frame size of 64 by 64. We believe this frame
size is suitable for the ppm images sized at 1536 by 1024. As to the window size, we need to
investigate extensively to find an optimal value. However, it is reasonable to try a 50% overlap
between neighboring windows at the beginning stage. We thus chose the window size to be 128
by 128. Under this windowing scheme, we evaluated the automatic segmentation system with
three different feature sets on set 1 of the Pre-Phase 01 data. Here, we compared the automatic
segmentation results to our reference manual segmentations. The best segmentation result we
achieve is a 61.4% block classification error rate by using blue combined with brown as the
feature set. Besides investigating different feature vectors, we also studied the effect of the
window size on the classification error rate. We repeated the experiment with the feature set of
blue plus brown for a smaller window size of 96 by 96, which gave us a window overlap of
33.3%. The evaluation results are shown in Table 13. Also a segmentation example is shown here
in Figure 6. For more such examples, please see the appendix.

Although the segmentation system did not show very good performance in terms of the block
classification error rate, from the more intuitive segmentation images, we do note a trend toward a
successful system. As we see in Figure 6, the blocks were generally classified in a reasonable
manner, with sky and background sky in the top, grass in the bottom, etc. This is a good sign.

To improve the system performance, we explored further to see what was responsible for the high
error rates. When we examined the confusion matrices from the above experiments (refer to the
appendix for details), we noticed that a significant portion of the errors occurred within the foliage

blocks. Currently, for each specific region, the errors made by the best system, which uses rgb
combined with entropy as its feature vector, can be classified as: tree - 47.3%, foliage - 86.1%,
bush - 44.1%, grass - 52.9%, background sky - 26.6%, sky - 10.0%. Obviously, a better foliage
classifier will be the key to the improvement of the system. To this end, we studied the foliage

classifier from a statistical viewpoint. In our PCA system, we compute distances, or scores as they
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Features Frame Size Window Size Error Rate
blue + brown 64 x 64 128 x 128 70.8
blue + brown + sl 64 x 64 128 x 128 70.2
rgb + ent 64 x 64 128 x 128 61.4
blue + brown 64 x 64 96 x 96 72.0

Table 13. Evaluation results for the block-level automatic segmentation system.

Figure 6. An example of the automatic segmentation. The manual segmentations have been added to the
original image. In both manual segmentations and automatic segmentations, we use various colors to
mark different regions. The mapping relationship is: brown - tree, red - foliage, yellow - bush, green - grass,
dark blue - sky, light blue - background sky. Note the accuracy of the segmentations for sky and back-

ground sky.
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are known in pattern recognition research, of a test feature vector to all the reference vectors and
assign the block a label corresponding to the reference it is closest to. We computed the
distribution of scores the foliage classifier generated in each experiment, false-alarms and
accuracy. The plots look very similar. We present one plot here in Figure 7. The remaining plots
can be found in the appendix. From these plots, it is clear that the foliage classifiers we used in
these experiments are not capable of discriminating foliage blocks and non-foliage blocks. This
explains the high errors which occurred. Currently, we are computing all 65 features on the
foliage regions and studying their statistical characters. We would like to choose those significant
features for the foliage classifier that can help better discrimination. If PCA can not succeed in
this, we will try better techniques such as Linear Discriminant Analysis (LDA).

From the results, we also note that the window size does not have a significant bearing on the
classification rate. By decreasing the window size from 128 by 128 to 96 by 96, we observe an
increase of 1 percent in the error rate. That should not be deemed significant. Therefore, our
efforts to improve the system will focus on researching feature sets.

5. SUMMARY

We have improved our PCA classification system on the SBE problem. This involved research on
new features and new algorithms. We have used an alternate chrominance-luminance color model,
YIQ, for the classification of images. The results indicate that the YIQ model may not be a good
replacement for the more commonly used RGB color model. We have studied a new color
computation and classification scheme using brown and yellow. These new color features
provided performance comparable to our previous best systems. We have also applied two new

feature set: blue + brown, frame size: B4 = B4, window size: 128 % 128
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Figure 7. Plots of distributions of scores generated by foliage block classifier in the experiment using a fea-
ture set of blue combined with brown. Note the poor discrimination ability of this classifier.
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classification techniques, ICA and SVM, to the SBE problem. We have shown that both ICA and
SVM perform better than the standard classification scheme of PCA. The overall performance,
however, is still far from human performance.

Other than system improvement, we have also made significant progress towards object
recognition. We have developed an image segmentation tool that allows rapid and accurate
manual segmentation of images. The entire USFS image database has been segmented using a
six-way classification scheme. We have designed software that makes use of this information to
train image classifiers. We also described a series of cheating experiments doing classification on
this manually-segmented image database. By processing only the upper one third portion of each
image, we were able to slightly improve on our previous best result. And by processing the
background sky region with the feature of blue and brown combined together, we reduced the
error classification rate by half for HSBE images. We described our initial implementations of
software that estimates models with this manual segmentation information and does classification
on a block-by-block basis. We evaluated the performance of this automatic segmentation system.
A careful analysis revealed that the current system is weak in classifying foliage blocks. If we find
significant features to build a foliage classifier, we will see great improvement on the performance
of this automatic segmentation software.

6. FUTURE WORK

We will first work on generating a good classifier for foliage blocks. We are now computing all
features on the foliage region for the whole database and analyzing their statistical characteristics.
We hope in this way to find some significant features that do a good job on foliage classification.
Then, we will incorporate syntactic information into the system to enhance the system
performance further. We will also carry out a more careful analysis of the effect of block sizes on
the system performance. Once we accomplish a system doing satisfactory image segmentation,
our focus will shift to automatic interpretation of the segmentations in ways that will move us
closer to true object recognition. We expect to build object recognition capabilities into the
software using successful statistical pattern recognition paradigms such as two-dimensional
Hidden Markov Models (HMM).
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9. APPENDIX

9.1. Detailed SBE Experiments Results
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Algorithm Features Setl | Set2 | Set3 | Set4 | Average
PCA red 516 | 494 | 575 | 55.0 534
PCA green 38.4 | 348 | 50.0 | 61.9 46.3
PCA blue 35.8 | 46.2 | 40.6 | 53.1 43.9
PCA yellow 547 | 38,6 | 45.6 | 67.5 51.6
PCA brown 37.7 | 386 | 41.9 | 55.0 43.3
PCA rgb 40.3 | 424 | 38.1 | 33.1 38.5
PCA ylw + brn 40.3 | 46.2 | 40.6 | 45.6 43.2
PCA rgb + ylw + brn 396 | 39.9 | 39.4 | 66.9 46.5
PCA blue + brn 314 | 50.6 | 35.0 | 56.9 435
PCA rgb + brn 472 | 46.2 | 48.1 | 38.8 451
PCA rgb + Il 39.0 | 405 | 35.6 | 36.3 37.9
PCA grn + blue + ylw + I 39.6 | 38.0 | 45.0 | 53.1 43.9
PCA grn + blue + ylw + brn + | 39.6 | 525 | 48.1 | 40.0 451
PCA blue + brn + |l 371 | 525 | 33.1 | 58.1 45.2
PCA rgb + 1l + sl 40.3 | 424 | 35.0 | 344 38.0
PCA rgb + sl 378 | 424 | 38.1 | 33.1 37.9
PCA rgb + ent 396 | 41.8 | 33.8 | 35.6 37.7
PCA rgb + Il + ent 421 | 43.0 | 325 | 36.3 38.5
PCA ent + fract 56.6 | 424 | 519 | 575 52.1
PCA rgb + Il + ent + fract 43.3 | 46.8 | 33.8 | 33.8 39.4
PCA entropy 49.7 | 449 | 64.4 | 50.6 52.4
PCA rgb + all 421 | 405 | 419 | 344 39.7
PCA rgb + all + fract 434 | 43.0 | 45.0 | 33.8 41.3
SVM all 346 | 342 | 31.2 | 319 33.0
SVM rgb 35.2 | 348 | 325 | 325 33.8
SVM rgb + Il 321 | 323 | 319 | 325 32.2
SVM rgb + Il + ent 35.2 | 342 | 319 | 325 33.4
SVM rgb + Il + fract 35.2 | 352 | 325 | 31.2 33.5
ICA all 35.2 | 335 | 319 | 33.1 334
ICA rgb 346 | 335 | 325 | 33.1 33.4
ICA rgb + Il 346 | 335 | 33.1 | 33.1 33.6
ICA rgb + Il + ent 346 | 342 | 33.1 | 325 33.6
ICA rgb + Il + fract 359 | 335 | 325 | 33.1 33.8
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Table 14. A cumulative summary of our SBE results.
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9.2. Confusion Matrices

9.2.1. Confusion Matrices For The Cheating Experiments

Here are the confusion matrices for the cheating experiments. For comparison, we also give the
confusion matrices for those experiments with the same conditions, but on entire images.

Automatic LSBE MSBE HSBE
LSBE 8 2 0
MSBE 17 75 15
HSBE 3 26 13

Table 15. Experiment Condition: Feature Set: rgb + entropy; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Error Rate: 39.6%. This experiment is on the entire image set.

Automatic LSBE MSBE HSBE
LSBE 7 22 1
MSBE 20 67 18
HSBE 1 14 9

Table 16. Experiment Condition: Feature Set: rgh + entropy; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: tree; Error Rate: 47.8%.

Automatic LSBE MSBE HSBE
LSBE 11 23 2
MSBE 15 62 14
HSBE 2 18 12

Table 17. Experiment Condition: Feature Set: rgb + entropy; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: foliage; Error Rate: 46.5%

Automatic LSBE MSBE HSBE
LSBE 4 27 10
MSBE 21 60 7
HSBE 3 16 11

Table 18. Experiment Condition: Feature Set: rgb + entropy; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: bush; Error Rate: 52.8%

Automatic LSBE MSBE HSBE
LSBE 9 24 1
MSBE 12 65 17
HSBE 7 14 10
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Table 19. Experiment Condition: Feature Set: rgb + entropy; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: grass; Error Rate: 47.2%
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Automatic LSBE MSBE HSBE
LSBE 7 10 0
MSBE 16 42 6
HSBE 5 51 22

Automatic LSBE MSBE HSBE
LSBE 5 2 0
MSBE 20 75 16
HSBE 3 26 12

Automatic LSBE MSBE HSBE
LSBE 7 20 1
MSBE 20 66 18
HSBE 1 17 9

Automatic LSBE MSBE HSBE
LSBE 9 27 2
MSBE 16 63 17
HSBE 3 13 9

Automatic LSBE MSBE HSBE
LSBE 6 25 10
MSBE 19 63 10
HSBE 3 15 8

Automatic LSBE MSBE HSBE
LSBE 9 22 0
MSBE 12 68 20
HSBE 7 13 8

PAGE 24 OF 31

Table 20. Experiment Condition: Feature Set: rgb + entropy; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: bgsky; Error Rate: 55.3%

Table 21. Experiment Condition: Feature Set: rgb + entropy + long lines; Data Set: set 1 of Pre-Phase data;
Algorithm: PCA,; Error Rate: 42.1%. This is the experiment on the entire image set.

Table 22. Experiment Condition: Feature Set: rgb + entropy + long lines; Data Set: set 1 of Pre-Phase data;
Algorithm: PCA,; Region: tree; Error Rate: 48.4%

Table 23. Experiment Condition: Feature Set: rgb + entropy + long lines; Data Set: set 1 of Pre-Phase data;
Algorithm: PCA,; Region: foliage; Error Rate: 49.1%

Table 24. Experiment Condition: Feature Set: rgb + entropy + long lines; Data Set: set 1 of Pre-Phase data;
Algorithm: PCA; Region: bush; Error Rate: 51.6%

Table 25. Experiment Condition: Feature Set: rgb + entropy + long lines; Data Set: set 1 of Pre-Phase data;
Algorithm: PCA,; Region: grass; Error Rate: 46.5%
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Automatic LSBE MSBE HSBE
LSBE 7 11 0
MSBE 16 39 6
HSBE 5 53 22

Automatic LSBE MSBE HSBE
LSBE 2 2 0
MSBE 24 97 18
HSBE 2 4 10

Automatic LSBE MSBE HSBE
LSBE 9 27 2
MSBE 16 66 15
HSBE 3 10 11

Automatic LSBE MSBE HSBE
LSBE 8 22 3
MSBE 18 75 21
HSBE 2 6 4

Automatic LSBE MSBE HSBE
LSBE 10 37 12
MSBE 14 51 5
HSBE 4 15 11

Automatic LSBE MSBE HSBE
LSBE 5 14 0
MSBE 14 70 11
HSBE 9 19 17
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Table 26. Experiment Condition: Feature Set: rgb + entropy + long lines; Data Set: set 1 of Pre-Phase data;
Algorithm: PCA; Region: bgsky; Error Rate: 57.2%

Table 27. Experiment Condition: Feature Set: blue + brown; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Error Rate: 31.4%. This is the experiment on the entire images.

Table 28. Experiment Condition: Feature Set: blue + brown; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: tree; Error Rate: 45.9%

Table 29. Experiment Condition: Feature Set: blue + brown; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: foliage; Error Rate: 45.3%

Table 30. Experiment Condition: Feature Set: blue + brown; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: bush; Error Rate: 54.7%

Table 31. Experiment Condition: Feature Set: blue + brown; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: grass; Error Rate: 42.1%
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Automatic LSBE MSBE HSBE
LSBE 5 12 0
MSBE 19 45 9
HSBE 4 46 19

INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING
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Table 32. Experiment Condition: Feature Set: blue + brown; Data Set: set 1 of Pre-Phase data; Algorithm:
PCA; Region: bgsky; Error Rate: 56.6%
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9.2.2. Confusion Matrices For The Automatic Segmentation Evaluations
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Automatic tree foliage bush grass bgsky sky
tree 2619 5100 2567 3332 179 0
foliage 122 1788 528 384 35 0
bush 855 5024 4595 3096 1 0
grass 985 1962 2818 3001 14 0
bgsky 697 3299 508 420 1464 1
sky 49 77 167 140 266 9

Table 33. Experiment Condition: Feature Set: blue + brown; frame size: 64 x 64; window size: 128 x 128;

Error Rate: 70.8%.

Automatic tree foliage bush grass bgsky sky
tree 2437 4913 2381 2978 182 0
foliage 170 1952 575 457 40 0
bush 822 4796 4428 2971 3 0
grass 1156 2315 3167 3441 14 0
bgsky 695 3201 475 388 1464 1
sky 47 73 157 138 256 9

Table 34. Experiment Condition: Feature Set: blue + brown + short lines; frame size: 64 x 64; window size:
128 x 128; Error Rate: 70.2%.

Automatic tree foliage bush grass bgsky sky
tree 2807 4494 1717 2454 181 0
foliage 260 2402 609 259 98 0
bush 911 6412 6252 2578 16 0
grass 831 1479 2208 4888 7 0
bgsky 504 2450 391 169 1437 1
sky 14 13 6 25 220 9

Table 35. Experiment Condition: Feature Set: rgb + entropy; frame size: 64 x 64; window size: 128 x 128;
Error Rate: 61.4%.
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Automatic tree foliage bush grass bgsky sky
tree 2839 5091 2701 3486 187 0
foliage 85 1276 426 306 33 0
bush 895 5436 4776 3259 13 0
grass 711 1753 2488 2551 16 0
bgsky 752 3633 664 646 1460 0
sky 45 61 128 125 250 10

Table 36. Experiment Condition: Feature Set: blue + brown; frame size: 64 x 64; window size: 96 x 96;
Error Rate: 72.0.

9.3. Distribution Plots Of The Scores By The Foliage Block Classifier

feature set: blue + brown, frame size: B4 x B4, window size; 1258 % 128
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Figure 8. Distribution plot of scores generated by foliage block classifier of the automatic segmentation
system. This is for the evaluation experiment No. 1. The conditions are listed in the title of the plot.
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feature set: blue + brown + short lines, frame size: 64 % 64, window size: 128 = 128
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Figure 9. Score distribution plot for experiment No. 2.

feature set: rgb + entropy, frame size: B4 % B4, window size; 128 = 128

0.35 . .

—  foliage blocks classified correctly as foliage
—— hon-foliage blocks misclassified as foliage

0.3

0.25

0.z

freguency

Figure 10. Score distribution plot for experiment No. 3.
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feature set: blue + brown, frame size: B4 x B4, window size: 96 = 96
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Figure 11. Score distribution plot for experiment No. 4. This experiment used a smaller window size.

9.4. Automatic Segmentation Examples

Some examples of the automatic segmentations are shown here. Note we added the manual
segmentations in the original images. For both manual segmentation and automatic segmentation,
we use various colors to distinguish different regions. The mapping relationship is as follows.

region color
tree brown
foliage red
bush yellow
grass green
bgsky light blue
sky dark blue

Table 37. Mapping relationship between colors and segmented regions.
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