
08/15/03 — 03/31/05: RESEARCH AND EDUCATIONAL ACTIVITIES 

The overall goal of this ITR was to create a strong synergy between speech recognition (ASR) and natural 
language processing (NLP). At the time this project began, integration of ASR and NLP was in its 
infancy, particularly for conversational speech applications. Over the duration of this project, two 
significant things happened. First, through the parallel efforts of DoD-funded research, community-wide 
focus on converstaional speech was achieved. Progress was impressive as error rates on tasks such as 
Switchboard and Call Home English decreased from 50% to 10%. ASR technology was now producing 
transcripts that were useful to NLP systems, and could support information retrieval applications 
involving important quantities such as named entities. 

Second, NLP research began to focus on the problem of parsing speech recognition output, which lacks 
punctuation and formatting that was previously considered crucial to high performance parsing. This 
latter issue was the main focus of this ITR, and to some extent served as a beacon for the community. We 
produced resources that were extremely valuable, such as the extensions to the Penn Treebank that were 
released in 2003 (reconciliation of the ISIP Switchboard segmentations and transcriptions with the Penn 
Treebank segmentations and transcriptions). We introduced the mainstream community to advanced 
statistical modeling techniques such as Support Vector Machines and enhanced these for NLP 
applications. 

Further, in line with the primary goal of the ITR program, this project created close collaborations 
between groups who did not previously work together. The PIs collaborated on a number of new 
initiatives as offshoots of this project, including applications in parsing, information retrieval, and 
homeland security. A subset of the PIs participated in conversational speech evaluations and workshops 
(e.g., DARPA EARS). Hence, we can conclude that this project created new synergies and new research 
directions that will continue beyond the timeframe of this project. 

In this final report, we briefly describe some of the significant findings of our research below. 

A. Laboratory for Linguistic Information Processing, Brown University 

Learning general functional dependencies, i.e. functions between arbitrary input and output spaces, is one 
of the main goals in supervised machine learning. Recent progress has to a large extent focused on 
designing flexible and powerful input representations, for instance by using kernel-based methods such as 
Support Vector Machines. We have addressed the complementary issue of problems involving complex 
outputs such as multiple dependent output variables and structured output spaces. In the context of this 
project we have mainly dealt with the problem of label sequence learning, a class of problems where 
dependencies between labels take the form of nearest neighbor dependencies along a chain or sequence of 
labels. The latter is a natural generalization of categorization or multiclass-classification that has many 
applications in the context of natural language processing and information extraction. Special cases 
include part-of-speech tagging, named entity recognition, and speech-accent prediction. More 
specifically, we have developed and empirically investigated several extensions of state-of-the-art 
categorization algorithms such as AdaBoost, Support Vector Machines, and Gaussian Process 
classification. We have designed and implemented several scalable learning algorithms that combine 
standard optimization techniques employed in the context of the above mentioned methods with dynamic 
programming techniques that account for the nearest neighbor dependencies. Experimental evaluations on 
a wide variety of tasks have shown the competitiveness of these methods compared to existing techniques 
like Hidden Markov Models and Conditional Random Fields.  

A second line of research conducted in the context of the present ITR has dealt with ways to 
systematically exploit class hierarchies and taxonomies. The main question we have investigated is 



whether or not a priori knowledge about the relationships between classes helps in improving 
classification accuracy, in particular in cases with many classes and few training examples. This is highly 
relevant for applications like word sense disambiguation and text categorization, where the number of 
classes can easily be in the tens of thousands. To that extend we have focused on a hierarchical version of 
the well-known perceptron learning algorithm as well as an extension of multiclass Support Vector 
Machines. We have shown that this approach can be effective in situations with sparse training data. 

B. Center for Language and Speech Processing, Johns Hopkins University 

The Structured Language Model (SLM) aims at making a prediction of the next word in a given word 
string by making a syntactical analysis of the preceding words. However, it faces the data sparseness 
problem because of the large dimensionality and diversity of the information available in the syntactic 
parses. A neural network model is better suited to tackle the data sparseness problem and its use has been 
shown to give significant improvements in perplexity and word error rate over the baseline SLM (Emami 
et al, 2003). 

In this work we have investigated a new method of training the neural net based SLM. Our model makes 
use of a neural network for that component of the SLM that is responsible for predicting the next work 
given the previous words and their partial syntactic structure.  We have investigated both a mismatched 
and a matched training scenario.  In matched training, the neural network is trained on partial parses 
similar to those that are likely to be encountered during evaluation.  On the other hand in the mismatched 
scenario, faster training time is achieved but at the cost of mismatch between training and evaluation and 
hence, possible degradation in performance. 

The Structured Language Model works by assigning a probability P(W,T) to every sentence W and every 
possible binary parse T of W. The joint probability P(W,T) of a word sequence W and a complete parse T 
is broken into: 
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where  1 1k kW T− −   is the word-parse (k-1)-prefix, kt  is the tag assigned to kw  by the TAGGER, 
1kN −  is the number of operations the CONSTRUCTOR executes at sentence position k before 

passing control to the PREDICTOR, and 
k
ip  denotes the i-th CONSTRUCTOR operation carried 

out at position k in the word string. 

Subsequently, the language model probability assignment for the word at position k+1 in the 
input sentence is made using: 
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which ensures a proper probability normalization over strings 
*W  where kS  is the set of all 

parses built and retained by the model at the current stage k. 



Neural networks are very suitable for modeling conditional discrete distribution with large 
vocabularies. These models work by first assigning a continuous feature vector with every token 
in the vocabulary, and then using a standard multi-layered neural net to get the conditional 
distribution at the output, given the input feature vectors.  Training is achieved by searching for 
parameters Θ  of the neural network and the values of feature vectors that maximize the 
penalized log-likelihood of the training corpus: 
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np y x x x −⋅ ⋅ ⋅ Θ  is the probability of word 

ty  (network output at time t), N is the 
training data size and R(Θ ) is a regularization term, L-2 norm squared of the parameters in our 
case. 

We have used a neural net to model the SCORER component of the SLM. By the SCORER we 

refer to the model 1( | )k k kP w W T+ . The neural net SCORER's parameters can be obtained by 
training it on the events extracted from the gold standard (usually one best) parses obtained from 
an external source (humans or an automatic parser).  However, there would be a mismatch 
during evaluation since the partial parses during that phase are not provided and have to be 
hypothesized by the SLM itself. We have called the SCORER trained in this manner the 
mismatched SCORER. 

On the other hand, one can train the model on partial parses hypothesized by the baseline SLM, 
thus maximizing the proper log-likelihood function. We have called this procedure the matched 
training of the SCORER. 

Experimental results have shown considerable improvement in both perplexity and WER when 
using a neural net based SLM, specially in the case of matched SCORER training. On the UPenn 
section of the WSJ corpus, perplexity reductions of 12% and 19% over the baseline SLM (with a 
perplexity of 132) have been observed when using the mismatched and matched neural net 
models respectively. 

For the WER experiments, the neural net bases models were used to re-rank an N-best list output 
by a speech recognizer on the WSJ DARPA'93 HUB1 test set (with a 1-best WER of 13.7%). 
The mismatched and matched neural net models reduced the SLM baseline WER of 12.6% to 
12.0% and 11.8% (for relative improvements of 4.8% and 6.3%) respectively. 

In summary, neural network models showed to be capable of taking advantage of the richer probabilistic 
dependencies extracted through syntactic analysis. In our case the use of a neural net for the SCORER 
component of the Structured Language Model resulted in considerable improvements in both perplexity 
and Word Error Rate (WER) with the best results achieved when using a training procedure matched with 
the evaluation. 



C. Signal, Speech, and Language Interpretation Lab, University of Washington 

Prosody can be thought of as the "punctuation" in spoken language, particularly the indicators of phrasing 
and emphasis in speech.  Most theories of prosody have a symbolic (phonological) representation for 
these events, but a relatively flat structure. In English, for example, two levels of prosodic phrases are 
usually distinguished: intermediate (minor) and intonational (major) phrases [Beckman & Pierrehumbert, 
1986].  While there is evidence that both phrase-level emphasis (or, prominence) of words and prosodic 
phrases (perceived groupings of words) provide information for syntactic disambiguation [Price et al., 
1991], the most important of these cues seems to be the prosodic phrases or the boundary events marking 
them. While prior work has looked at the use of prosody in automatic parsing of isolated sentences, a key 
component of our work involved sentence detection as well, since our goal is to handle continuous 
conversational speech. Hence, the focus of our work has been on automatically recognizing sentence 
boundaries and sentence-internal prosodic phrase structure and investigating methods for integrating that 
structure in parsing. 

To support these efforts, we also worked on analysis of acoustic cues to prosodic structure. The most 
important (and best understood) acoustic correlates of prosody are continuous-valued, including 
fundamental frequency (F0), energy, and duration cues.  Particularly at phrase boundaries, cues include 
significant falls or rises in fundamental frequency accompanied by word-final duration lengthening, 
energy drops, and optionally a silent pause.  In addition, however, there is evidence of spectral cues to 
prosodic events, so some of our work explored these cues, which also have implications for improving 
speech recognition. 

Our approach to integrating prosody in parsing is to use symbolic boundary events that have categorical 
perceptual differences, including prosodic break labels that build on linguistic notions of intonational 
phrases and hesitation phenomena but also higher level structure.  These events are predicted from a 
combination of the continuous acoustic features, rather than using the acoustic features directly, because 
the intermediate representation simplifies training with high-level (sparse) structures. Just as most 
automatic speech recognition (ASR) systems use a small inventory of phones as an intermediate level 
between words and acoustic feature to have robust word models (especially for unseen words), the small 
set of word boundary events are also useful as a mechanism for generalizing the large number of 
continuous-valued acoustic features to different parse structures. This approach is currently somewhat 
controversial because of the high cost of hand labeling, and to some extent because of its association with 
a particular linguistic theory. However, the specific subset of labels used in this work are relatively theory 
neutral and language independent, and a key contribution of this work is the use of weakly supervised 
learning to reduce the cost of prosodic labeling. 

An alternative approach, as in [Noth et al, 2000], is to assign categorical "prosodic" labels defined in 
terms of syntactic structure and presence of a pause, without reference to human perception, and 
automatically learn the association of other prosodic cues with these labels.  While this approach has been 
very successful in parsing speech from human-computer dialogs, we expect that it will be problematic for 
conversational speech because of the longer utterance and potential confusion between fluent and 
disfluent pauses. 

C.1 Data, Annotation and Development 

The usefulness of speech databases for statistical analysis is substantially increased when the database is 
labeled for a range of linguistic phenomena, providing the opportunity to improve our understanding of 
the factors governing systematic suprasegmental and segmental variation in word forms.  Prosodic labels 
and phonetic alignments are available for some read speech corpora, but only a few limited samples of 
spontaneous conversational speech have been prosodically labeled.  To fill this gap, a subset of the 



Switchboard corpus of spontaneous telephone-quality dialogs was labeled using a simplification of the 
ToBI system for transcribing pitch accents, boundary tones and prosodic constituent structure [Pitrelli 
et al., 1994]. The aim was to cover phenomena that would be most useful for automatic transcription and 
linguistic analysis of conversational speech.  This effort was initiated under another research grant, but 
completed with partial support from this NSF ITR grant. 

The corpus is based on about 4.7 hours of hand-labeled conversational speech (excluding silence and 
noise) from 63 conversations of the Switchboard corpus and 1 conversation from the CallHome corpus. 
The orthographic transcriptions are time-aligned to the waveform using segmentations available from 
Mississippi State University (http://www.cavs.msstate.edu/hse/ies/projects/switchboard/index.html) and a 
large vocabulary speech recognition system developed at the JHU Center for Language and Speech 
Processing for the 1997 Language Engineering Summer Workshop (www.clsp.jhu.edu/ws97) [Byrne et 
al., 1997].  All conversations were analyzed using a high quality pitch tracker [Talkin, 1995] to obtain F0 
contours, then post-processed to eliminate errors due to crosstalk.  The prosody transcription system 
included: i) breaks (0-4), which indicate the depth of the boundary after each word; ii) phrase prominence 
(none, *, *?); and iii) tones, which indicate syllable prominence and tonal boundary markers.  It also 
provides a way to deal with the disfluencies that are common in spontaneous conversational speech (a p 
diacritic associated with the prosodic break), and to indicate labeler uncertainty about a particular 
transcription. The annotation does not include accent tone type, primarily to reduce transcription costs 
and because we hypothesized that the phrase tones would be relevant to dialog act representations which 
may be relevant for question-answering. For further information on the corpus and an initial distributional 
analysis, see [Ostendorf et al. 2001]. 

The prosodically labeled subset of Switchboard overlaps with the subset of that corpus annotated with 
Treebank parses, but there is a mismatch in the orthographic transcriptions because the Treebank parses 
were based on an earlier version of transcripts and the prosodic annotation was based on the higher 
quality corrections done by Prof. Picone's group (ISIP) at Mississippi State.  In addition, we made use of 
the DARPA EARS metadata annotations that overlapped with the Treebank parses, which where again 
based on the higher quality transcriptions. To be able to use all of these resources, we used an alignment 
of words provided by the ISIP team, and mapped the Treebank parse information to the more recent word 
transcriptions, which could then be aligned with the EARS metadata annotations. Differences in 
transcriptions were handled by: dropping the parse information for deletions, transferring it as is for word 
substitutions, and treating it as "missing" information for insertions in the corrected transcripts.  While 
most of the differences between the Treebank and corrected word transcriptions involved simple 
substitutions (or deletions) that had little or no impact on the parse (e.g. "a" vs. "the"), there were some 
cases where the transfer introduced noise into the collection of parses. The most frequent such cases were 
in disfluent regions, where transcribers tend to have more difficulties, including missed word fragments or 
repetitions ("I I" vs. "I I I").  An additional difference between the Treebank parses and the EARS 
metadata annotations is the marking of sentence boundaries.  Since speakers frequently begin sentences 
with conjunctions, the metadata conventions often split up constituents marked as compound sentences in 
Treebank. Because the metadata labelers listened to the speech and the Treebank labelers did not, we 
chose to use the metadata constituents, which in most cases involved simply dropping a top-level (S) 
node, but in some cases involved adding a top-level node called "SUGROUP". 

C.2 Automatic Labeling of Prosodic Structure 

An important part of the effort was development of an automatic prosodic labeling system that would 
provide cues to improve parsing. In addition, the resulting system was inspected to analyze possible 
dependencies between prosodic and parse structures in conversational speech. In the experiments, we 
used decision tree classifiers with different combinations of acoustic, punctuation, parse, and disfluency 
cues. While more sophisticated techniques, such as HMMs and maximum entropy models, have been 



used for related tasks of sentence boundary detection (see [Liu et al., 2005] for a brief survey), we chose 
decision trees because they are easy to inspect for learning about the prosody-syntax relationship and 
because this simplified the weakly supervised learning experiments, which were the focus of our efforts.  

For the prosody/syntax analyses, we designed trees to predict prosodic labels from syntactic structure, as 
well as trees to predict prosodic structure from a combination of syntactic and acoustic cues.  For 
purposes of providing information to a parser, we designed trees to predict prosodic constituents from 
acoustic cues and part-of-speech (POS) tags, but as an intermediate step in designing these trees we also 
used syntactic cues in designing trees as part of the weakly supervised training.  More specifically, a 
small set of labeled data was used to train prosody models based on both text and acoustic cues, which 
were then used in combination to automatically label a large set of data that had not been hand-annotated 
with prosodic structure, and finally new (separate) acoustic-based prosody models were designed from 
this larger data set for use in parsing new data. 

Experiments were conducted on the Switchboard corpus, using the prosodically annotated subset 
described above for initial training and evaluation (independent subsets for each). Then the full 
Switchboard training set was incorporated using various methods for weakly supervised learning, as 
described below. The prosodic constituent labels were merged into 3 classes: major intonational phrase 
boundary (4), hesitation boundary (1p, 2p), and all other fluent word boundaries.  We grouped minor 
intonational phrase boundaries (3) with the default word boundary class, because preliminary experiments 
showed that they were almost never predicted by the decision trees (even with sampled training to 
account for the low frequency) and because they were most often confused with the default word class in 
4-class prediction experiments. The simple 3-class system also has the advantage that it is relatively 
theory neutral and language independent in that essentially all languages have a notion of fluent and 
disfluent segmentation. 

The acoustic cues included normalized F0, energy and duration cues based on those used in [Kim et al., 
2004] and similar to those used in other metadata detection studies [Shriberg et al., 2000].  Text-based 
cues -- including punctuation, parse structure and disfluency markers -- were taken from the annotations 
available from the Linguistic Data Consortium, aligned to the word transcriptions as described above. The 
parse features included right-to-left and left-to-right relative depth, part-of-speech, label of the left and 
right syntactic constituents, and parenthetical markers.  In addition, disfluency interruption points and 
flags for filled pauses and sentence-initial conjunctions were used as features.  Punctuation as inserted by 
a human transcriber (including incomplete sentences) and estimated speaker turn boundaries (defined 
simply as a word boundary with a silence of length greater than 4s) were also used. 

The baseline system trained on hand-labeled data has error rates of 9.6% when all available cues are used 
(both syntax and prosody) and 16.7% when just acoustic and POS cues are used.  This can be compared 
to an error rate of 30% when the default class is assigned to all word boundaries.  We considered three 
different weakly supervised training techniques for adding data without prosodic labels (but with hand-
labeled syntactic structure) into the training set: EM, co-training, and self-training.  The co-training 
algorithm used classifiers designed on either acoustic or syntactic cues, and it differed slightly from the 
standard method in that we used an information-theoretic distance on the tree posteriors to determine 
when to omit samples with conflicting classifier decisions.  The self-training algorithm used bagging with 
uniform class sampling to deal with data skew [Liu et al., 2004]. In all cases, only 1-2 iterations were 
needed.  Both the co-training and EM approaches gave improved performance over the baseline, with the 



EM algorithm giving the best results of 14.2% error for the acoustic-only trees, which corresponds to a 
15% reduction in error rate over supervised training. The self-training strategy actually hurt performance.1 

From analysis of the resulting trees, we find that punctuation and repair points are correlated with 
prosodic breaks and hesitations, as expected.  Silence duration is the most useful individual acoustic 
feature, but alone it is not a reliable predictor of prosodic phrases, since there are many prosodic phrases 
that do not occur at silences and because silences are frequently associated with hesitations. Aside from 
syntactic structure, the most important text features for predicting prosodic constituents are punctuation, 
disfluency edit point markers, filler words (sentence-initial coordinating conjunctions, discourse markers, 
filled pauses), and turn boundaries. Some important syntactic features include depth of subtrees on the left 
and right sides of the boundary, previous and next syntactic constituent tag, length of closing phrase, and 
part-of-speech tags. These features were relevant when associated with the target word boundary, but 
frequently also with the next or previous word boundary. Surprisingly, the label of the joining constituent 
is not useful.  This analysis provided input into the parse reranking work described in the next section. 

Due to the success of the weakly supervised training on prosodic phrase boundary detection, we have 
recently started investigating use of the same technique for training models of prosodic prominence. 
Initial results show only a 4% reduction in error rate for the system based on acoustic cues, from 22% to 
21% error.  Despite the high error rate, however, the automatically annotated prominence appears to be 
useful in topic identifications in preliminary experiments associated with a separate NSF project (IIS-
0121396). 

C.3 Prosody and Parsing 

Parsing speech can be useful for a number of tasks, including information extraction and question 
answering from audio transcripts. However, parsing conversational speech presents a different set of 
challenges than parsing text: sentence boundaries are not well-defined, punctuation is absent, and 
presence of disfluencies (edits and restarts) impact the structure of language. Most prior work on parsing 
conversational speech has focused on handling disfluencies [Hindle 1983; Mayfield 1995; Charniak & 
Johnson, 2001], but experiments relied on hand-marked sentence boundaries and made use of punctuation 
as in text-based parsers.  While utterance-level segmentation may be reasonable to assume in current 
human-computer dialog systems, it is not realistically available in recognized conversational speech. 
Hence, our work looked at the problem of parsing text with disfluencies and without punctuation. 

We have investigated three main issues in the use of prosody in parsing: the impact of automatic sentence 
segmentation, the usefulness of interruption points, and the usefulness of automatically detected sub-
sentence prosodic constituent boundaries (described above). In all cases, we use a two-stage architecture 
where metadata (constituent boundaries) are first detected with a combination of prosodic and simple text 
features, and then these symbolic events (or their posterior probabilities) are used in parsing. Our 
approach focuses on categorical boundary events, which are predicted from a combination of acoustic 
features, rather than using the acoustic features directly. As argued earlier, the intermediate representation 
simplifies training with sparse structures.  Key research issues include whether the metadata should be 
treated as "words" or as features on words, whether edits should be represented with an independent 
component, and how to represent uncertainty of the metadata classifiers.  Our work has begun 
investigating all of these questions, but some remain unanswered and are being pursued in ongoing work. 

                                                      

1 The results reported here are in some cases worse than those reported in an earlier progress report, because they are based on a 
larger data set.  Due to a data processing bug, several files were omitted from earlier studies. In addition, because of the larger 
amount of data used and the richer feature sets, the trees are much larger than those described in prior reports. 



The data used in this work is the Treebank portion of the Switchboard corpus of conversational telephone 
speech, which includes sentence-like unit boundaries (SUs) as well as the reparandum and interruption 
point of disfluencies.  The data consists of 816 hand-transcribed conversation sides (566K words), of 
which we reserve 128 conversation sides (61K words) for evaluation testing according to the 1993 NIST 
evaluation choices.  In all cases, training was based on hand-labeled SUs.  Parses were evaluated using 
SU boundaries rather than the standard punctuation-based units that the Treebank is based on, so the gold 
standard parses and parse evaluation metric were modified to incorporate the SUs. 

The most exhaustive series of experiments looked at the impact of automatic segmentation on parsing.  
For this particular effort, we chose to work with the complete word sequence, i.e. including all of the 
words within edit regions, to allow experimentation with multiple parsers. In initial work [Kahn et al., 
2004], we used the structured language model (SLM) as a parser with a simple pause-based segmentation 
and automatically detected SUs (69% vs. 35% slot error rate, respectively), showing a significant 
improvement in parsing performance when using the automatic SUs.  We then confirmed the findings 
with results on the same segmentation alternatives but using two state-of-the-art statistical parsers trained 
on conversational speech: the Bikel [Bikel, 2004] 2 and Charniak [Charniak & Johnson, 2001] 3 parsers.  
Figure 1 shows the relative performance of each parser for the two different segmentations, comparing to 
the oracle performance for each using hand-annotated SUs.  In order to have a single number for 
performance, we use the F-measure calculated from bracket precision and recall.  (Trends with separate 
precision and recall measures and with bracket crossing statistics follow the same patterns.)  For all three 
parsers, there is a significant gain in performance due to using the explicit SU detection algorithm, with 
more than half of the performance loss associated with the pause-based segmenter recovered when 
moving to the more sophisticated SU detection system. As SU detection improves, we would expect 
further performance gains.  Also important is the observation that the impact of increased SU error is not 
lessened by using a better parser: the best oracle results were achieved with the Bikel parser, but it was 
much more sensitive to SU errors than the 
SLM. 

In trying to understand the role of IPs in 
parsing, we ran several experiments, 
including some with and without human-
annotated punctuation.  Without 
punctuation, there was a small increase in 
parsing performance of the SLM using IPs 
When the SUs are automatically detected. 
We were not able to confirm these gains 
with other parsers; however, recent work in 
[Johnson, Charniak & Lease, 2004] shows a 
benefit to edit detection from using IPs 
which presumably would lead to improved 
parsing in their two-stage processing 
strategy [Johnson & Charniak, 2004].  
Including punctuation and IPs in 
experiments with the SLM showed an 
                                                      

2 http://www.cis.upenn.edu/~dbikel/download.html (Version 0.9.9). For this work, we trained the Bikel 
parser on the Switchboard Treebank parses with the Collins settings. 

3 ftp://ftp.cs.brown.edu/pub/nlparser/ (August 2004) 

 
Figure 1. Relative performance of different parsers for the RT03 
MDE SU detection system and a simple pause-based system, in 
each case comparing the F-measure to that obtained with oracle 
SUs. 



interesting trade-off of bracket precision and 
recall using the two different cues, as illustrated 
in Figure 2.  We saw the improved precision 
associated with using both punctuation and IPs as 
possible evidence that sub-sentence prosodic 
constituents might be useful. 

In all of the above work, metadata is incorporated 
as "word" tokens, similar to the standard 
mechanism for parsers to incorporate 
punctuation.  For sentence segmentation with a 
reasonably reliable segmenter, this may make 
sense, but certainly for sub-sentence prosodic 
constituents there is the potential for the gains 
associated with adding prosody to be offset by a 
loss from the extra words blocking part of the 
history that might be used in a statistical model 
of word dependence. We conjecture that this may in part explain the negative results obtained in [Gregory 
et al., 2004], since our analyses of the prosody prediction trees provides some evidence that sub-sentence 
prosodic constituents may be useful in parsing. (The direct use of acoustic features may also be 
problematic.) In addition, the use of metadata events as "words" requires a hard decision in the first stage 
of detection, and many results in speech processing suggest that soft decisions (e.g. using class posteriors) 
are more effective.  

To address these problems, we developed an extension to the SLM that uses prosodic constituents as 
hidden conditioning variables, similar to headword conditioning in the SLM.  However, since our 
subsequent work obtained much better baseline performance with other parsers, we decided to explore a 
parse reranking framework [Johnson et al., ms. in prep.] as an alternative method for incorporating 
automatically detected prosodic constituents.  The approach uses a maximum entropy reranking model 
and introduces new features based on counts of syntactic constituent types weighted by the posterior 
probability of different prosodic events.  Experiments with this new approach are in progress, now under 
other funding, and we anticipate having results in early 2005.  This series of experiments will also look at 
the question of whether a separate stage of edit detection benefits parsing compared to simply 
incorporating the edit structure in the parser with the same status as other constituents. 

C.4 PROSODY AND ACOUSTIC MODELING 

Most research on the use of prosody in automatic speech processing has focused on F0, energy and 
duration correlates to prosodic structure. However, there is evidence from long standing acoustic, 
articulatory and perceptual studies of speech suggesting that there are spectral correlates as well.  For that 
reason, we conducted an analysis of our prosodically labeled conversational speech data using acoustic 
parameters and clustering techniques that are standard in speech recognition. We found that prosodic 
factors are associated with acoustic differences that can be learned in standard speech recognition 
systems.  Both prosodic phrase structure and phrasal prominence seem to provide distinguishing cues, 
with some phones being affected much more than others (as one would expect from the linguistics 
literature).  We hypothesized that we would find that constituent onsets were important at all levels 
(syllable, word and prosodic phrase).  Instead, we found that onset is more important for syllables, but 
constituent-final position is more important at higher levels.  Prosodic prominence had a smaller affect 
than phrase structure in terms of increasing likelihood of the training data, but seemed to result in more 
separable models when it did play a role. 

 

Figure 2. Precision-recall trade-offs associated with using 
punctuation, oracle IPs or both in addition to SUs in 
parsing. 



Finally, we found evidence that segmental cues can help distinguish fluent from disfluent phrase 
boundaries, in that segments associated with these categories are frequently placed in different clusters. 
These differences can be leveraged in a “multiple pronunciation” acoustic model to aid in detecting fluent 
vs. disfluent prosodic boundaries, though additional prosodic cues are necessary to separate these from 
unmarked word boundaries.  A limitation of this work was that it was based on hand-labeled data, and 
therefore did not take advantage of the full training data set needed for designing a state-of-the-art 
recognition system.  However, with our recent developments in prosodic annotation, we will be able to 
assess the usefulness on a much larger corpus in the future. 

D. Institute for Signal and Information Processing, Mississippi State University 

Hidden Markov models (HMMs) with Gaussian emission densities are the prominent modeling technique 
in speech recognition. HMMs suffer from an inability to learn discriminative information and are prone to 
overfitting and overparameterization. Recent work in machine learning has focused on models, such as 
the support vector machine (SVM), that automatically control generalization and parameterization as part 
of the overall optimization process. SVMs, however, require ad hoc (and unreliable) methods to couple it 
to probabilistic speech recognition systems. We have applied a probabilistic Bayesian learning machine 
termed the relevance vector machine (RVM) as the core statistical modeling unit in a speech recognizer. 
The RVM is shown to provide superior performance compared to HMMs and SVMs in terms of both 
accuracy and sparsity on a continuous alphadigit task. 

Computer speech recognition is typically posed as a statistical pattern recognition problem based on 
Bayesian methods in which the acoustic model and language model are treated as separate statistical 
models. The focus of our work has been the acoustic model, which maps sequences of features vectors to 
probabilities that these vectors were produced by a given linguistic unit, such as phone. In most state of 
the art recognition systems, a hidden Markov model (HMM) is used as the acoustic model. The popularity 
of the HMM representation is based on an HMMs ability to simultaneously model the temporal 
progression of speech (speech is usually seen as a “left-to-right” process) and the acoustic variability of 
the speech observations. The temporal variation is modeled via an underlying Markov process while the 
acoustic variability is modeled by an emission distribution at each state in the Markov chain.  

The most commonly used emission distribution is the Gaussian mixture model (GMM). While 
combinations of HMMs and Gaussian mixture models have been extremely successful, there are two 
fundamental limitations of these approaches: (1) the parametric form of the underlying distribution is 
assumed to be Gaussian, (2) the maximum likelihood (ML) approach, which is typically used to estimate 
model parameters, does not explicitly improve the discriminative ability of the model. The ML approach 
maximizes the probability of the correct model while implicitly ignoring the probability of the incorrect 
model. Ideally, a training approach should force the model toward in-class training examples while 
simultaneously driving the model away from out-of-class training examples. Methods such as maximum 
mutual information and minimum classification error have been developed to incorporate discriminative 
training directly into the standard HMM/GMM framework. However, their success has been limited due 
primarily to their considerable computational costs. 

The weaknesses of the HMM/GMM system have led researchers to explore other models, such as hybrid 
connectionist systems, which merge the power of artificial neural networks (ANNs) and HMMs. 
HMM/ANN hybrids have shown promise in terms of performance but have not yet found  widespread use 
due to some serious problems. First, ANNs are prone to overfitting the training data if allowed to blindly 
converge. To avoid overfitting, a cross-validation set is often used to define a stopping point for training. 
This is wasteful of data and resources — a serious consideration in speech where the amount of labeled 
training data is limited. ANNs also typically converge much slower than HMMs. Most importantly, the 



HMM/ANN hybrid systems have not shown the substantial improvements in recognition accuracy over 
HMM/GMM systems that would be necessary to force a paradigm shift. 

The approaches developed in this work draw significantly from the HMM/ANN hybrid systems. 
However, we seek methods which are automatically immune to overfitting without the artificial 
imposition of a cross-validation set as well as methods which can automatically learn the appropriate 
model structure as part of the overall optimization process. One such model that has come to the forefront 
of pattern recognition research is the support vector machine (SVM). The support vector paradigm is 
based upon structural risk minimization (SRM) in which the learning process is posed as one of 
optimizing some risk function. The optimal learning machine is the one whose free parameters are set 
such that the risk is minimized. 

Finding a minimum of the risk function is typically impossible due to the unknown distribution. Instead, 
it has been shown that a relationship exists between the actual risk, which is related to the empirical risk 
(i.e. the training set error which can be measured) and the Vapnik-Chervonenkis (VC) dimension. The VC 
dimension is a measure of the capacity of a learning machine to learn any training set and is typically 
closely related to the complexity of the learning machine’s structure. With this result, we can guarantee 
both a small empirical risk (training error) and good generalization — an ideal situation for a learning 
machine. 

In their most basic form SVMs use the SRM principle to impose an order on the optimization process by 
ranking candidate separating hyperplanes based on the margin they induce. For separable data, the 
optimal linear hyperplane is the one that maximizes the margin. The true power of the SVM, however, 
lies in how it deals with nonlinear class separating surfaces. Providing for a nonlinear decision region is 
accomplished using kernels. The optimization process yields a decision function where the sign of can be 
used to classify examples as either in-class or out-of-class. The decision function is formed from only 
those training vectors that lie on the margin or in overlap regions. In practice, the proportion of the 
training set that becomes support vectors is small, making the classifier sparse. Consequently, the training 
process,  along with the training set, directly optimize the complexity of the learning machine. In contrast, 
ANN systems often make a priori assumptions about the form of the model. 

SVMs have had great success on static classification tasks. However, it is only recently, that these 
techniques have been applied to continuous speech recognition. While the SVMs provide an excellent 
classification paradigm, they suffer from two serious drawbacks that hamper their effectiveness in speech 
recognition. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale 
linearly with the quantity of training data. For a large speaker independent corpus this effect is 
prohibitive. Second, the SVMs are binary classifiers. In speech recognition this is an important 
disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no 
decision boundary. Further, the combination of disparate knowledge sources (such as linguistic models, 
pronunciation models, acoustic models, etc.) requires a method for combining the scores produced by 
each model so that alternate hypotheses can be compared. Thus, we require a probabilistic classification 
which reflects the amount of uncertainty in our predictions. 

We have investigated a Bayesian model termed the relevance vector machine (RVM) which is similar in 
form to the SVM but which addresses these two problems. The essence of an RVM is a fully probabilistic 
model with an automatic relevance determination prior over each model parameter. Thus, sparseness in 
the RVM model is explicitly sought in a probabilistic framework. 

D.1 Sparse Bayesian Methods 



Supervised learning in speech recognition implemented via a maximum likelihood approach is the 
dominant approach for finding values of the parameters in our model that best match the training data. 
Our expectation in data modeling is that given sufficient training data, the model would generalize to 
unseen test sets. Two levels of inference must be implemented to accomplish this. First, assuming that a 
particular model is true, we seek to infer the values for the parameters of the model that best fit the data at 
hand. This is exactly the training process used in the ANN hybrids. Second, we must decide which model 
is most appropriate given the data at hand, i.e. model comparison. 

A simple approach to model comparison might dictate that we simply choose the model that fits the data 
best — the maximum likelihood solution. However, a more complex model can always fit the data better. 
Jaynes describes an extreme interpretation of this problem where we would always choose the so-called 
Sure Thing hypothesis, under which exactly the training set and only the training set is possible. Though 
it is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeasing and is counter 
to our desire for a solution which generalizes. We avoid choosing the Sure Thing hypothesis by 
expressing an a priori preference for simpler solutions using the principle of Occam’s Razor. MacKay 
and others have formalized this preference mechanism through the use of Bayesian methods. These 
provide a natural and quantitative embodiment of Occam’s razor. The first level of inference requires that 
we find the best-fit parameters. The second level of inference requires the comparison of competing 
hypotheses. If we assume that the competing hypotheses are a priori equiprobable then the best 
hypothesis is chosen by evaluating the evidence. The evidence is computed by marginalization across the 
model parameters. 

The evidence provides a natural trade-off between the best-fit likelihood and the Occam factor. This 
concept is closely related to other methods such as the Minimum Description Length and the Bayesian 
Information Criteria where the model is directly penalized by the number of parameters used. A similar 
idea was also incorporated into SVM models, which penalize the models with too large a capacity (VC 
dimension). However, while the SVM models are forced to estimate the penalty via cross-validation 
schemes, Bayesian techniques automatically determine and apply the penalty in a fully probabilistic 
framework. 

Assuming we have no prior knowledge that would cause us to favor a particular prior, we can find the 
optimal value for by evaluating the evidence. If we did have prior knowledge, we would simply repeat the 
inference over using the prior. At some level of the inference, we will arrive at a point where our prior 
knowledge is too weak to apply and then we evaluate the evidence. This extreme application of the 
Bayesian prior as a control parameter is known as the method of automatic relevance determination 
(ARD). It is so named because the prior over the input unit weights in a neural network can ‘shut-off’ 
those input dimensions which are irrelevant to the problem at hand. ARD is at the heart of the relevance 
vector machines that will be described next. 

D.2 Relevance Vector Machines 

An application of the evidence framework to kernel machines is the relevance vector machine (RVM). As 
with SVMs, RVMs use a weighted linear combination of basis functions. Due to the large number of 
parameters in this mode l— one per observation — we must guard against overfitting of the model to the 
training data. SVMs use a control parameter to implicitly balance the trade-off between training error and 
generalization. RVMs take a Bayesian approach and explicitly define an ARD prior distribution over the 
weights. 

Each weight in the RVM model has an individual hyperparameter, , that is iteratively reestimated as part 
of the optimization process. As the hyperparameter grows larger, the prior on becomes infinitely peaked 
around zero, forcing to go to zero and, thus, contributing nothing to the summation. This process 



automatically embodies the principle of 
Occam’s Razor because it explicitly seeks the 
simplest model that satisfies the data 
constraints. In practice, the majority of the 
weights are pruned, resulting in an 
exceedingly sparse model with generalization 
abilities on par with SVMs. To complete the 
Bayesian specification of the model, we have 
to specify a prior probability. In practice we 
use a non-informative (flat) prior to indicate 
a lack of preference. 

The parameter estimation process is an 
iterative reduction process. That is, initially 
each vector of the system is allocated one 
parameter. As the procedure continues, vectors are pruned from the model when they are found to be 
irrelevant with respect to the remaining parameters. Integral to this iterative reestimation process is the 
computation of the inverse Hessian matrix. This operation requires the inversion of an MxM Hessian 
matrix where M is initially set to the size of training set. For larger training sets (on the order of a few 
thousand), this computation is prohibitive both in time and memory.  

D.3 Experiments 

RVMs have had significant success in several classification tasks. These tasks have, however, involved 
relatively small quantities of static data. Speech recognition, on the other hand, involves processing a very 
large amount of temporally evolving signals. In order to gain insight into the effectiveness of RVMs for 
speech recognition, we explored two tasks. We first experimented on the Deterding static vowel 
classification task which is a common benchmark used for new classifiers. Second, we applied the 
techniques described above to a complete small vocabulary recognition task. Comparison with SVM 
models are given below. For each task, the RVMs outperformed the SVM models both in terms of model 
sparsity and error rate. 

In our first pilot experiment, we applied SVMs and RVMs to a publicly available vowel classification 
task, Deterding Vowels. This was a good data set to evaluate the efficacy of static classifiers on speech 
classification data since it has been used as a standard benchmark for several nonlinear classifiers for 
several years. In this evaluation, the speech data was collected at a 10 kHz sampling rate and low pass 
filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, giving a 10 dimensional 
input space. A window duration of 50 msec was used for generating the features. The training set 
consisted of 528 frames from eight speakers and the test set consisted of 462 frames from a different set 
of seven speakers. The speech data consisted of 11 vowels uttered by each speaker in a h*d context. 
Though it appears to be a simple task, the small training set and significant confusion in the vowel data 
make it a very challenging task. 

Table 1 shows the results for a range of nonlinear classification schemes on the Deterding vowel data. 
From the table, the SVM and RVM are both superior to nearly all other techniques. The RVM achieves 
performance rivaling the best performance reported on this data (30% error rate) while exceeding the 
error performance of SVMs and the best neural network classifier. Importantly, the RVM classifiers 
achieve superior performance to the SVM classifiers while utilizing nearly an order of magnitude fewer 
parameters. While we do not expect the superior error performance to be typical (on pure classification 
tasks) we do expect the superior sparseness to be typical. This sparseness property is particularly 
important when attempting to build systems which are practical to train and test. 

 
Table 1. Performance comparison of SVMs and RVMs to other 
nonlinear classifiers on static vowel classification data. 



A hybrid recognition architecture was also developed that is a parallel of our SVM hybrid. Each phone-
level classifier (either an SVM or RVM dichotomous classifier) is trained as a one-vs-all classifier. The 
classifiers are used to predict the probability of an acoustic segment. For the SVM hybrid, a sigmoid 
posterior fit is used to map the SVM distance to a probability. The RVM output is naturally probabilistic 
so no link function is needed. 

The HMM system is used to generate alignments at the phone level. Each phone instance is treated as one 
segment. Since each segment could span a variable duration, we divide the segment into three regions in a 
set ratio and construct a composite vector from the mean vectors of the three regions. In our experiments 
empirical evidence showed that a 3-4-3 proportion generally gave optimal performance. The classifiers in 
our hybrid systems operate on composite vectors. For decoding, the segmentation information is obtained 
from a baseline HMM system —a cross-word triphone system with 8 Gaussian mixtures per state. 
Composite vectors are generated for each of the segments and posterior probabilities are hypothesized 
that are used to find the best word sequence using the Viterbi decoder. The HMM system also outputs a 
set of N-best hypotheses. The posterior probabilities for each hypothesis are determined and the most 
likely entry of the N-best list is produced. 

The performance of RVMs on the static classification of vowel data gave us good reason to expect the 
performance on continuous speech would be appreciably better than that of the SVM system in terms of 
sparsity and on par with the SVM system in terms of accuracy. Our initial tests of this hypothesis have 
been on a telephone alphadigit task. Recent work on both alphabet and alphadigit systems has taken a 
focus on resolving the high rates of recognizer confusion for certain word sets. In particular, the E-set 
(B,C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K, H, EIGHT). The problems occur mainly because 
the acoustic differences between the letters of the sets are minimal. For instance, the letters B and D differ 
primarily in the first 10-20 ms during the consonant portion of the letter. 

The OGI Alphadigit Corpus is a telephone database collected from approximately 3000 subjects. Each 
subject was a volunteer responding to a posting on the USEnet. The subjects were given a list of either 19 
or 29 alphanumeric strings to speak. The strings in the lists were each six words long, and each list was 
“set up to balance phonetic context between all letter and digit pairs.” There were 1102 separate 
prompting strings which gave a balanced coverage of vocabulary and contexts. The training, cross-
validation and test sets consisted of 51544, 13926 and 3329 utterances respectively, each balanced for 
gender. The data sets have been chosen to make them speaker independent. 

The hybrid SVM and RVM systems have been benchmarked on the OGI alphadigit corpus with a 
vocabulary of 36 words. A total of 29 phone models, one classifier per model, were used to cover the 
pronunciations. Each classifier was trained using the segmental features derived from 39-dimensional 
frame-level feature vectors comprised of 12 cepstral coefficients, energy, delta and acceleration 
coefficients. The full training set has as many as 30k training examples per classifier. However, the 
training routines employed for the RVM models are unable to utilize such a large set as mentioned earlier. 
The training set was, thus, reduced to 10,000 training examples per classifier (5,000 in-class and 5,000 
out-of class). 



The test set was an open-loop speaker independent set with 3329 sentences. The composite vectors are 
also normalized to the range -1 to 1 to assist in convergence of the SVM classifiers. Both the SVM and 
RVM hybrid systems use identical RBF kernels with the width parameter set to 0.5. The trade-off 
parameter for the SVM system was set to 50. The sigmoid posterior estimate for the SVM was 
constructed using a held-out set of nearly 14000 utterances. The results of the RVM and SVM systems 
are shown in Table 2. The important columns to notice in terms of performance are the error rate, average 
number of parameters and testing time. In all three, the RVM system outperforms the SVM system. It 
achieves a slightly better error rate of 14.8% compared to 15.5%. This error rate is obtained in over an 
order of magnitude fewer parameters. This naturally translates to well over an order of magnitude better 
runtime performance. However, the RVM does require significantly longer to train. Fortunately, that 
added training time is done off-line. 

D.4 Experiments  

This work is the first application of sparse Bayesian methods to continuous speech recognition. By using 
an automatic relevance determination mechanism, we are able to achieve state-of-the-art performance in 
extremely sparse models. Further, this is accomplished while maintaining a purely probabilistic 
framework. We also achieve performance better than the popular SVM kernel classifier while using an 
order of magnitude fewer parameters for both a static classification task and a continuous speech task. 
However, this runtime efficiency comes at a large up front cost during training. Thus, most of our work at 
this point is focused on more efficient training schemes so that we can move to larger vocabulary tasks. 
To this end, we have developed an iterative subset refinement approach which attempts to optimize the 
global criteria by locally optimizing the model on small subsets of the total training set. The subset 
models are incrementally used to generate a model of the full training set. 

We are continuing our work on learning machines in speech recognition, and are now exploring new 
nonlinear statistical models under separate funding. This ITR project was our first opportunity to explore 
such risky and innovative methods. 

 
Table 2. Performance comparison of SVMs and RVMs on Alphadigit recognition data. The RVMs yield a large reduction in 
the parameter count while attaining superior performance. 
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08/15/02 — 08/14/03: RESEARCH AND EDUCATIONAL ACTIVITIES

In the third year of this project, we focused our efforts in four areas:

• Interaction of Speech and Parsing : investigated the use of prosody information within the
framework of probabilistic parsing; developed new approaches to discriminative learning for
sequence segmentation problems; investigated text categorization based on automatically extracted
semantic features.

• Language Modeling Technology : developed neural network approaches to probabilistic language
models;

• Prosody and Parsing : analyzed spectral cues to prosodic structure and the interaction between
prosodic and syntactic structure.

• Relevance Vector Machines : focused on the creation of algorithms for kernel-based discriminative
modeling that scale up to very large data sets.

These developments are described in more detail in the sections below. A project meeting w
held during Summer’03 to coordinate the work on this project.

A. Laboratory for Linguistic Information Processing, Brown University

This year, our primary focus was the investigation of the use of prosody information within
framework of probabilistic parsing. We treated prosody much like punctuation in written text
as if it were separate “words.” Unfortunately, as opposed to punctuation, we were not ab
obtain any benefit from the prosody markers. The results were robust over a large number o
in which the specifics of the markings were varied.

In the information retrieval component of our research, we explored two research prob
(i) discriminative learning for sequence segmentation problems and label sequence problem
(ii) robust text categorization based on automatically extracted semantic features.

Learning from observation sequences is a fundamental problem in machine learning. One f
the problem generalizes supervised classification by predicting label sequences inste
individual class labels. The latter is also known as label sequence learning. It subsumes pro
like segmenting observation sequences and annotating observation sequences. The p
applications are widespread, most interesting in the context of the current project i
application for named entity classification and information extraction to support informa
retrieval. We have made two major contributions to this problem. First, we have develop
boosting algorithm for label sequence learning and investigated the use of several alter
objectives for the label sequence learning problem [1]. Secondly, we have proposed a
algorithm that combines Support Vector Machine learning with Hidden Markov Models [2
resulting in a powerful learning architecture that combines the high classification accura
large margin methods, with the flexibility of kernels, and the efficiency of dynamic programm
Experimental comparisons for named entity classification and part-of-speech tagging have p
the competitiveness of our approach compared to state-of-the-art techniques like cond
random fields.

In order to improve the accuracy and robustness of term based text categorization we
investigated the use of semantic features in addition to simple term based features [4
semantic features are domain-specific and are automatically extracted from a document col
without the need for a thesaurus or any other linguistic resource. We have employed a tec
BROWN/JHU/UWASH/MS STATE PAGE 1 NSF ITR: AWARD 0085940
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called probabilistic Latent Semantic Analysis (pLSA) to that extend. Experimental results s
consistent and significant improvements with respect to various performance measures (s
accuracy, average precision, precision-recall breakeven, etc.) compared to purely term
methods.

B. Center for Language and Speech Processing, Johns Hopkins University

The biggest obstacle language modeling research has to overcome is the ‘curse of dimensio
If we want to have a model which is capable of assigning scores (probabilities) to long sequ
of words, given vocabulary sizes on the order of tens of thousands of words, the model will
far too many parameters to be reliably estimated even with the largest corpora available
approach is two-fold: (1) transforming the problem into a smooth continuous domain where
seen event in the training corpus will contribute to the estimation of the probabilities of its un
neighbors, (2) developing a combinatory categorical grammar (CCG) as a natural enrichm
the syntactical labels in the structured language model (SLM). We briefly describe progre
each of these areas.

N-gram language models are the most commonly used models in speech recognition sy
Despite their naive underlying assumption, N-gram models perform surprisingly well. How
they suffer from severe data sparseness, and are intrinsically unable to use long conte
prediction. In the SLM [11], long contexts are used for prediction by means of building pa
syntactical parses on the prefix word strings and using information extracted from these p
parses.

There has been promising work in using distributional representations of words and n
networks for language modeling [12]. One great advantage of this approach is its ability to
data sparseness. The model size grows only sub-linearly with the number of predicting fe
used. The SLM is made of three components: a predictor which predicts the next word, a t
which tags the newly predicted word, and a constructor which builds partial parses for the n
extended word string. The neural network approach, on the other hand, uses a feature
which is associated with each token in some given input vocabulary. The input to the networ
single vector that is a concatenation of the feature vectors of the items in the history. The n
network then computes the (conditional) distribution over all tokens in the output vocabu
given the input described above.

The neural network approach has been successful at reducing the perplexity on the U
section of the Wall Street Journal task from 132 (our previous baseline SLM result) to 117
latter result uses three previous head plus the first opposite head [13] along with a 5-gram b
model. We have also investigated re-ranking the output of a speech recognizer on the WS
using the neural network-based SLM (NN-SLM). WER was reduced from 13.2 to 12.4
interpolating a lattice output and rescoring using the 5-gram based SLM. We believe
preliminary results are promising, and can be improved by full embedded training of the
SLM.

The combinatory categorical grammar (CCG) is a wide-coverage parsing technique that h
potential benefit of a more constrained grammar and simple semantically transparent cap
extraction and coordination [14]. CCG grammars have much larger category sets than sta
Penn Treebank grammars that we used in our previous SLM studies [15,16]. For example,
distinguish between many classes of verbs with different subcategorization frames. As a re
BROWN/JHU/UWASH/MS STATE PAGE 2 NSF ITR: AWARD 0085940
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simple unary and binary combinatory schemata such as function application and compo
CCG has a smaller and less overgenerating grammar than standard PCFGs.

Our interest in using CCGs in SLM lies in the fact that CCG categories can serve as a n
enrichment of the syntactic information of a lexical item or a constituent in the parse tree. S
CCG categories are context dependent, we will have a context dependent enrichment
syntactic heads, as opposed to uniform enrichment in previous studies. We investigate
perplexity performance of the CCG style SLM on the UPenn Treebank data. The CCG-
reduced perplexity from 166 to 147, a 15.1% reduction. We then investigated its impact on N
rescoring of a WSJ task and found it provided no significant reduction in WER.

There are many issues that need further investigation to accurately assess the CCG
performance on a recognition task. For example, we currently use linear interpolation a
smoothing method in all models. This is not likely to be the optimal choice for the CCG-S
because of the large number of categories we are using. We plan to investigate other alter
for smoothing such as history clustering and maximum entropy.

C. Signal, Speech, and Language Interpretation Lab, University of Washington

This year, we used prosodically labeled data as a feature in HMM decision tree clusteri
investigate whether prosody might be useful in acoustic modeling and whether spectra
might be useful for prosody recognition. Preliminary results suggest that spectral cues are
for discriminating between fluent and disfluent pauses.

We also analyzed the interaction between prosodic and syntactic structure. We invest
different aspects of parse structure to determine what features are the best predictors of p
structure, with the assumption that these would be the best targets for using prosody to im
parsing. The depth of the left constituent is the most important feature of those investigated

We continued investigating recognition of prosodic structure given acoustic cues and/or syn
cues using known word transcriptions and simple decision tree classifiers. For a 4
recognition problem, we achieved 79% correct with prosodic cues alone, and 89% correct
parse features are added. Since very high results are obtained with the combined featur
there is much more syntactically annotated data than prosodically labeled data, we are cu
investigating training prosody recognition modules using only partially labeled data.

Finally, we experimented with recognition of sentence boundaries and disfluency interru
points. We have begun experiments in recognizing sentence boundaries, incomplete senten
disfluency interruption points using prosodic and word class (POS) cues. So far, we have
results for detecting sentences, but interruptions and incomplete sentences are much less f
and hence not well modeled. One problem is that there are word boundaries that
(theoretically and because of acoustic correlates) be marked as interruption points (e.g. b
filled pause) which were not marked with the current labeling convention. The next step
assess performance with a revised disfluency labeling system.

D. Institute for Signal and Information Processing, Mississippi State University

The work at Mississippi State University this year has focused on the creation of algorithm
kernel-based discriminative modeling that scale up to very large data sets. At the close of th
fiscal year, we had developed a hybrid relevance vector machine (RVM) recognition sy
BROWN/JHU/UWASH/MS STATE PAGE 3 NSF ITR: AWARD 0085940
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which addressed the major limitations in our hybrid support vector machine (SVM) sys
described in [5,6]. The Relevance Vector Machine (RVM) [7] attempts to overcome
deficiencies of the SVM by incorporating a probabilistic model directly into the classifier ra
than using a large margin classifier [7]. The principle attraction of the RVM is that it deliv
comparable performance as an SVM, but uses much fewer parameters. It is also much
computationally efficient during testing as described in Table 1.

As with SVMs, the process to train an RVM classifier is computationally expensive even for s
problems. For the RVM, the training procedure uses an iterative reduction process. Th
initially each vector of the system is allocated one parameter. As the procedure continues, v
are pruned from the model when they are found to be irrelevant with respect to the rema
parameters. Integral to this iterative reestimation process is the computation of the in
Hessian matrix. This operation requires the inversion of an MxM Hessian matrix where
initially set to the size of training set. For larger training sets (on the order of a few thousand)
computation is prohibitive both in time and memory. In fact, initially in this work we were una

to operate on data sets larger than a few thousand training examples.

This year, we have focused on methods to overcome the training size limitation with the R
Our first attempt was to implement a constructive training approach recently defined by Tip
and Faul [8]. In this algorithm the model begins with only a single parameter specified. All ot
are implicitly pruned. Parameters are then added to the system in a constructive fashion wh
satisfying the original optimization function. We are able to add a good bit more training da
our system — on the order of 10 thousand examples — in training. However, care must be
to insure convergence rates are reasonable. We have found that the model will often os
between a few local optima leading to slow convergence or even an inability to converge.

Despite our ability to increase the overall training size by approximately one order of magni
this iterative procedure does not completely solve the problem. For even larger problems
typical in speech recognition, the full design matrix (or kernel matrix), will not fit in memory.
can still use the constructive approach but it requires the repeated recalculation of the full d
matrix and is, again, prohibitive — now in time rather than memory. We have spent conside
effort this fiscal year researching alternatives to the constructive approach of Tipping and Fa
can overcome this problem. We have developed automatic data selection methods that allo
to determine which training vectors are most likely to contribute to the final model.

Each of the data selection methods follow the same essential algorithm demonstrated in Fig
BROWN/JHU/UWASH/MS STATE PAGE 4 NSF ITR: AWARD 0085940

Approach
Word

Error Rate
Avg #

Parameters
Training

Time
Testing Time

SVM: RBF Kernels 15.5% 994 3 hours 1.5 hours

RVM: RBF Kernels 14.8% 72 5 days 5 minutes

Table 1. Performance comparison of SVMs and RVMs on Alphadigit recognition data. The RVMs yield a
large reduction in the parameter count while attaining superior performance. However, this performance
comes with a large up-front cost in training.
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A seed model is trained from a small (but reasonably-sized) data set. This model is then u
probe the remaining training vectors. Some measure is used to determine which of the rem
candidate training vectors are most appropriate to add to the training set. Training is then re
with the candidate vectors added to the model pool. Either the constructive training approa
the iterative pruning approach to training can be used at this point so long as the model re
suitably small.

What differentiates the data selection methods we have examined is the criteria used to m
the “goodness” of the candidate vectors. Our first selection criteria is drawn from Faul
Tipping [9]. The marginal log-likelihood of the data can be written as:

(1)

where is defined in terms of the model parameters and are the training targets of the s
Tipping and Faul define the incremental, predicted, change in the log-likelihood function d
the addition of a training parameter. Our method uses that incremental change as the se
criterion. Those vectors that have a maximal predicted change, given the current mode
chosen to be candidates for the next model.

The second selection criteria used follows the work of MacKay [10]. The mean marg

L α( ) 1
2
--- N 2πlog Clog tTC 1– t+ +[ ]–=

C t
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Figure 1. Flow graph for data selection methods. The criteria for candidate selection differentiates the
different methods.
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(2)

where can be computed directly from the current model parameters. The goal, then, wo

to find those vectors which maximize (2). There is an analogous, but more complex, functio
choosing a set of data that produces a joint maximum. These techniques have each increa
training capacity of the RVM approach by two orders of magnitude. We are still in the proce
evaluating the properties of these. Particularly, we are interested in their convergence pro
and their effect on word error rate in the recognizer.
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08/15/01 — 08/14/02: RESEARCH AND EDUCATIONAL ACTIVITIES

In the second year of this project, we focused our efforts in four areas:

• Interaction of Speech and Parsing : investigated the way in which language phenomena which are
very common in speech, but relatively rare in the formal text that parsing technology typically deals
with, effects the parsing process.

• Lattice Generation Technology : developed lattice cutting techniques that transforms traditional
word lattices into a series of segment sets that contain confusable words and phrases, thereby
simplifying the search process during rescoring.

• Prosody and Parsing : developed categorical prosodic break labels, building on linguistic notions of
minor and major prosodic phrases and the hesitation phenomena.

• Relevance Vector Machines : developed new reestimation techniques to make this approach
feasible for large-scale system evaluations.

These developments are described in more detail in the sections below.

A project meeting was held at Brown University on June 13, 2002 to coordinate the work on
project. All organizations involved in this project were present at this meeting. Our next
project meeting is planned for early June’2003.

A. Laboratory for Linguistic Information Processing, Brown University

One of the research activities this last year on the interaction between speech and parsing
investigation into the way in which language phenomena which are very common in speec
relatively rare in the formal text that parsing technology typically deals with, effects the par
process. In particular, both “filled pauses” (“ums” and “ahs”) and parentheticals (“you know”)
common in speech, but not text. Previous work in the area has shown that both tend to occu
readily at clause boundaries than elsewhere in sentences, leading to the conjecture that rat
making parsing more difficult, they might make things easier. Unfortunately, some re
experiments at Brown, to be presented at the 2002 Conference on Empirical Methods in N
Language Processing (EMNLP) seem to suggest that this is not the case. A standard sta
parser was trained on text with and without such phenomena, and its performance was me
It seems that filled pauses make parsing harder, parentheticals make parsing harder, an
together make it harder still. This goes against the prevailing expectations, and some
suggestions by the prosody researchers within this project are going to be followed up upon
effort to refine this result. In particular there is some evidence that “ah” and “um” might be
differently in this regard, and it might be worth distinguishing the two, something not done in
last year’s experiments.

B. Center for Language and Speech Processing, Johns Hopkins University

CLSP concentrated on three activities this year: lattice cutting, neural probabilistic lang
modeling, and the impact of richer syntactic dependencies on the performance of the stru
language model.

B.1 Lattice Cutting

CLSP has provided lattices for use in developing parsers automatically transcribe speech. L
were generated on the RT-02 (Rich Transcription 2002 Evaluation) development test set u
BROWN/JHU/UWASH/MS STATE PAGE 8 NSF ITR: AWARD 0085940
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conversational speech ASR system trained on the SWITCHBOARD corpus. These were pro
in determinized acoustic score form, in that the language model scores used in generati
lattices were removed so that only the acoustic score of each individual word hypot
remained. These were determinized using the AT&T FSM toolkit so that each lattice is com
and easy to search using any left-to-right language model.

A segmented version of these lattices were also produced using lattice cutting techn
developed at CLSP. Lattice cutting pinches word lattices so that lattices are transformed t
like a series of segment sets that confusable words and phrases. Lattice rescoring is chang
searching over entire sentences found in the original lattice to resolving the small numb
confused words and phrases in the segment sets. A research avenue to explore is whethe
can be modified to search over these smaller, more constrained sets.

B.2 Neural Probabilistic Language Modeling

The problem of language modeling research for ASR is essentially the problem of sparsen
data. Conventionally, it has been treated by smoothing of various kinds and lately by utilizati
sentence structure. However, Bengio and his associates [1] have come up with a novel ap
based on artificial neural networks (ANNs). We have confirmed their results by indepen
experimentation, as shown in Table 1.

Perplexity experiments were carried out on the Brown corpus and the UPenn section of the
corpus. We will next (a) ascertain the ASR error rate effects obtainable from these improve
(b) apply the approach to improving components (i.e., the predictor) of a structural lang
model.

B.3 The Impact Richer Syntax Dependencies on the Structured Language Model

We studied the impact of richer syntactic dependencies on the performance of the stru
language model (SLM) along two dimensions: perplexity (PPL) and word-error-rate (W
N-best rescoring).

Under the equivalence classification in the SLM, the conditional information available to the
model components is made up of the two most-recent exposed heads consisting of two N
and two headwords. In an attempt to extend the syntactic dependencies beyond this lev
enriched the non-terminal tag of a
node in the binarized parse tree with
the NT tag of the parent node (PA),
or the NT tag of the child node from
which the headword is not being
percolated (OP), or we added the NT
tag of the third most-recent exposed
head to the history of the
CONSTRUCTOR component (h-2).

Without interpolating with the
3-gram, the opposite (OP) scheme
performed the best, reducing the PPL
of the baseline SLM by almost 5%

Table 1. A comparison of a neural network (NN) based
language modeling technique to traditional methods. The
baselines 3-gram interpolated and 5-gram Knesser-Ney
interpolated respectively. For the combined case, the NN
model was interpolated with the baseline using a constant
weight of 0.5023.

Corpus
Subset

Baseline
Neural

Network
Combined

Brown 366 257 N/A

UPenn 141 157 121
BROWN/JHU/UWASH/MS STATE
 PAGE 9 NSF ITR: AWARD 0085940
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relative. When the SLM is interpolated with the 3-gram, the h-2+opposite+parent sch
performed the best, reducing the PPL of the baseline SLM by 3.2%.

The h-2+opposite scheme achieved the best WER result, with a 0.4% absolute reduction o
performance of the opposite scheme. Overall, the enriched SLM achieves 10% relative red
in WER over the 3-gram model baseline result. This scheme outperformed the 3-gram u
generate the lattices and N-best lists, without interpolating it with the 3-gram model.

We will continue to study additional changes in the SLM parametrization schemes.

C. Signal, Speech, and Language Interpretation Lab, University of Washington

Prosody can be thought of as the “punctuation” in spoken language, particularly the indicat
phrasing and emphasis in speech. Most theories of prosody have a symbolic (phonolo
representation for these events, but a relatively flat structure. In English, for example, two
of prosodic phrases are usually distinguished: intermediate (minor) and intonational (m
phrases [2]. While there is evidence that both phrase-level emphasis (or, prominence
prosodic phrases provide information for syntactic disambiguation [7], the most importan
seems to be phrase structure. The acoustic correlates of prosody are continuous-valued, in
fundamental frequency (F0), energy, and duration cues. Particularly at phrase boundarie
include significant falls or rises in fundamental frequency accompanied by word-final dur
lengthening, energy drops and optionally a silent pause.

C.1 Data Annotation and Development

The usefulness of speech databases for statistical analysis is substantially increased w
database is labeled for a range of linguistic phenomena, providing the opportunity to improv
understanding of the factors governing systematic suprasegmental and segmental varia
word forms. Prosodic labels and phonetic alignments are available for some read speech c
but only a few limited samples of spontaneous conversational speech have been proso
labeled. To fill this gap, substantial samples of the Switchboard corpus of spontaneous tele
quality dialogs were labeled using a simplification of the ToBI system for transcribing p
accents, boundary tones and prosodic constituent structure [6]. The aim was to cover phen
that would be most useful for automatic transcription and linguistic analysis of conversat
speech. This effort was initiated under another research grant, but completed with partial s
from this NSF ITR grant.

The corpus is based on about 4.7 hours of hand-labeled conversational speech (excluding
and noise) from 63 conversations of the Switchboard corpus and 1 conversation from
CallHome corpus. The orthographic transcriptions are time-aligned to the waveform u
segmentations available from Mississippi State University (http://www.isip.msstate.edu/projects
switchboard/index.html) and a large vocabulary speech recognition system developed at the
Center for Language and Speech Processing for the 1997 Language Engineering S
Workshop (www.clsp.jhu.edu/ws97) [3]. All conversations were analyzed using a high qu
pitch tracker [9] to obtain F0 contours, then post-processed to eliminate errors due to cros
The prosody transcription system included: i) breaks (0-4), which indicate the depth o
boundary after each word; ii) phrase prominence (none, *, *?); and iii) tones, which ind
syllable prominence and tonal boundary markers. It also provides a way to deal with
disfluencies that are common in spontaneous conversational speech (a p diacritic associat
BROWN/JHU/UWASH/MS STATE PAGE 10 NSF ITR: AWARD 0085940
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the prosodic break), and to indicate labeller uncertainty about a particular transcription
annotation does not include accent tones, primarily to reduce transcription costs and beca
hypothesized that the phrase tones would be relevant to dialog act representations which m
relevant for question-answering.

C.2 PROSODY AND PARSING

Our approach is to integrating prosody in parsing is to use categorical prosodic break l
building on linguistic notions of minor and major prosodic phrases and the hesitation phenom
An important reason for using categorical units rather than the acoustic correlates themse
that the intermediate representation simplifies training with high-level (sparse) structures. J
most ASR systems use a small inventory of phones as an intermediate level between wor
acoustic feature to have robust word models (especially for unseen words), the prosodic
are also useful as a mechanism for generalizing the large number of continuous-valued a
features to different parse structures. In addition, the low-dimensional discrete representa
well suited to integration with current parsing frameworks, either as added “words” or as fea
on words. This approach is currently somewhat controversial because of the high cost of pr
labeling, and to some extent because of the association with a particular linguistic theory. T
specific subset of labels used in this work, though founded in the ToBI system, collapse so
the detail of the system to simply represent minor and major phrases and disfluencies, so
the categories are relatively theory neutral (and language independent). Furthermore,
objective of this work is to overcome the cost of prosodic labeling by using bootstrap
techniques.

Specifically, a small set of labeled data is used to train an automatic prosody annotation alg
that has both text and acoustic cues. These cues are used in combination to automatically la
rest of the Switchboard data, and then new (separate) prosody-parse and prosody-acoustic
are designed for the final system, building on EM or co-training techniques. An altern
approach, as in [4], is to assign categorical “prosodic” labels defined in terms of synt
structure and presence of a pause, without reference to human perception, and automatical
the association of other prosodic cues with these labels. While this approach has bee
successful in parsing speech from human-computer dialogs, we expect that it will be proble
for Switchboard because of the longer utterance and potential confusion between fluen
disfluent pauses.

The automatic prosody annotation effort is described further in the next section; here we b
outline the key research issues for designing and integrating the different model compone
the parsing application. Building on the two-stage approach introduced in [10], the pla
architecture involves prosodic break detection and generation of an augmented
transcription, followed by detection of edit points and disfluent regions, and finally parsing.
research issues include whether the prosodic breaks should be treated as “words” or as fea
words, whether disfluencies should be represented as an independent component, and
represent uncertainty of the prosodic classifier.

C.3 AUTOMATIC LABELING OF PROSODIC STRUCTURE

An important part of the past year’s effort was development of a prosodic labeling system in
to increase the effective training data, and for analysis of the dependence between prosod
BROWN/JHU/UWASH/MS STATE PAGE 11 NSF ITR: AWARD 0085940
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parse structures in conversational speech. Experiments were conducted on the Switc
corpus, specifically the prosodically annotated subset described previously. We used decisi
classifiers with a combination of acoustic, punctuation, parse, and disfluency cues. In this
study, the only acoustic cue was silence duration; work with F0, energy and duration cues
progress. The punctuation, parse and disfluency cues were taken from the annotations av
from the Linguistic Data Consortium, aligned to the word transcriptions as described a
Speaker turn and incomplete sentence markers were among these cues. The disfluen
included repair points as well as markers of filled pauses and coordinating conjunctions u
utterance initial position. The parse features included right-to-left and left-to-right relative de
part-of-speech, label of the left and right syntactic constituents, and parenthetical markers.

The baseline system assigns the most likely class (default word boundary) in all cases exc
assigning a major phrase boundary at pause locations. This strategy gives 74% accuracy
disfluency, parse features and silence duration features improves performance to 86% ac
The most important features are punctuation, silence duration, disfluency edit point markers
to-right depth of the parse tree, and part-of-speech tags. The tree was quite simple (8 node
anticipate further performance gains with the use of duration lengthening and intonation cu

From analysis of the resulting tree, we find that punctuation and repair points are correlate
prosodic breaks and hesitations, as expected. Silences alone (though useful) are not a
predictor of prosodic phrases, since there are many prosodic phrases that do not occur at s
and because silences are frequently associated with hesitations. The depth (or possibly the
of the left constituent is a useful predictor, but labels of the neighboring constituents do
Further investigation of representations of syntactic constituent labels is ongoing, since
studies have shown association of clause boundaries (e.g. constituent labels) with major pr
breaks. We find that minor phrase boundaries are never predicted by the decision trees desi
these experiments. Although this is not entirely surprising, since minor phrases are rare, we
that it may be possible to distinguish these structures given duration lengthening and/or into
cues, in which case analysis of the full Switchboard corpus could show some relationship be
minor phrases and particular syntactic constituents.

C.4 PROSODY AND ACOUSTIC MODELING

Most research on the use of prosody in automatic speech processing has focused on F0,
and duration correlates to prosodic structure. However, there is evidence from long sta
acoustic, articulatory and perceptual studies of speech suggesting that there are spectral co
as well. For that reason, we conducted an analysis of our prosodically labeled conversa
speech data using acoustic parameters and clustering techniques that are standard in
recognition. We found that prosodic factors are associated with acoustic differences that c
learned in standard speech recognition systems. Both prosodic phrase structure and
prominence seem to provide distinguishing cues, with some phones being affected much
than others (as one would expect from the linguistics literature). We hypothesized that we w
find that constituent onsets were important at all levels (syllable, word and prosodic ph
Instead, we found that onset is more important for syllables, but constituent-final position is
important at higher levels. Prosodic prominence had a smaller affect than phrase structure in
of increasing likelihood of the training data, but seemed to result in more separable models
it did play a role. Finally, we found evidence that segmental cues can help distinguish fluent
BROWN/JHU/UWASH/MS STATE PAGE 12 NSF ITR: AWARD 0085940
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disfluent phrase boundaries, in that segments associated with these categories are fre
placed in different clusters. These differences can be leveraged in a “multiple pronuncia
acoustic model to aid in detecting fluent vs. disfluent prosodic boundaries, though addi
prosodic cues are necessary to separate these from unmarked word boundaries. A limita
this work was that it was based on hand-labeled data, and therefore did not take advantage
full training data set needed for designing a state-of-the-art recognition system. However, wi
recent developments in prosodic annotation, we will be able to assess the usefulness on
larger corpus in the future.

D. Institute for Signal and Information Processing, Mississippi State University

The work at Mississippi State University this year has centered on extending last year’s pro
in acoustic modeling robustness through kernel-based discriminative modeling. At the close
last fiscal year, we had developed a hybrid speech recognition system that combined the te
modeling benefits of hidden Markov models (HMMs) and the discriminative mode
capabilities of the support vector machine (SVM) paradigm. This hybrid system used a segm
modeling approach to phone classification, building a set of one-vs-all binary classifier
integrate the SVM into the HMM framework, a sigmoidal posterior probability function was u
to convert the SVM distances to probabilities. From this work, we identified two major limitati
of the hybrid HMM/SVM framework that have become the core of this year’s work:

• HMM-derived segmentations: In the hybrid system, the SVM is dependent on the HMM core to
provide good segmentations. It would be preferable to have the SVM determine for itself an optimal
segmentation and hypothesis set.

• Ad-hoc probability estimator: The sigmoid posterior estimate incorporated into the hybrid HMM/
SVM system was found to be ineffectual — a follow-up experiment indicated that simply using a step
function yielded only a negligible loss in accuracy. The relevance vector machine (RVM), a
completely probabilistic model that retains many of the discrimination and sparsity properties of the
SVM, was identified as a potential solution to this problem.

An initial method for removing the dependency of the SVM on the HMM segmentations was
upon a time-synchronous Viterbi decoder. The SVM in this system is presented with all pos
phone segmentations for all possible hypotheses. It scores those according to the one-vs-al
classifiers, and the search process chooses the best sequence of words given those
However, in this framework, we found that the computational resources required were too
To achieve a reasonable resource requirement, pruning thresholds needed to be tuned to t
where overpruning frequently occurred. This resulted in search errors and very poor word
rates. For instance, on an alphadigits task where state-of-the-art error rates are in the range
15%, the SVM system could only achieve 85% error.

An analysis of the search paths at runtime indicated that the problem was in the combined
synchronous Viterbi search and segmental models. The segmental models require that a co
phone segment be hypothesized before the phone is actually hypothesized and scored. This
in a large number of hypotheses that exist in the same model at the same time but which c
be compared for pruning purposes. In other words, Viterbi pruning can not be carried out
sub-phone level. Contrast this to standard HMM systems where the predominate pruning
Viterbi pruning carried out a the sub-phone level. A potential solution to this problem is
implementation of a stack-based decoding approach. With the removal of the time-sync
BROWN/JHU/UWASH/MS STATE PAGE 13 NSF ITR: AWARD 0085940
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A second line of research pursued this year was replacement of the SVM by an RVM mode
RVM is a Bayesian model which takes the same form as the SVM model and provides a
probabilistic alternative to the SVMs which use the ad-hoc sigmoid posterior estimate. The R
have been found to provide generalization performance on par with SVMs while typically u
nearly an order of magnitude fewer parameters as indicated for a vowel classification ta
Table 2. Sparseness of the model is automatic using MacKay’s automatic relevance determ
methods.

Our initial attempts to incorporate the RVM technology used an approach identical to the h
HMM/SVM system. A set of one-vs-all RVM phone classifiers were trained on segmental
Unlike the SVM, there was no need for a posterior estimator function since the RVM is, itse
posterior estimator. As with SVMs, the process to train an RVM classifier is computation
expensive even for small problems.
For the RVM, though, the

computational complexity is O(M3) in

run-time and O(M2) memory, where
M is the number of basis functions
and is initially set to the size of the
training corpus. Thus, our initial
attempts were limited to relatively
small training sets as indicated in
Tables 3 and 4. Since our aim is to
replace the HMM emission
distribution by an RVM, the RVM
would be exposed to every frame of

Classifier
Error
Rate

Average
Parameter

Count

SVM 40.8% 1213

RVM 41.2% 178

Table 4.. Comparison of SVM and RVM classifiers on
alphadigit recognition tasks. Both systems used a
segmental hybrid architecture. Note that the RVM has
over an order of magnitude fewer parameters but requires
significantly longer to train. A reduced training set of 2000
segments was used.

Classifier
Error
Rate

Average
Parameter

Count

SVM 35.0% 82.8

RVM 30.3% 12.6

Classifier
Error
Rate

Average
Param.
Count

Train
Time

Test
Time

SVM 16.4% 257
1/2

hour
30
min

RVM 16.2% 12 1 month 1 min

Table 2. Comparison of SVM and RVM
classifiers on Deterding vowel data. Each
classifier type was trained as a set of 11 1-vs-
all classifiers. The best performance reported
thus far on this data is 30.4% using a speaker
adaptation scheme called Separable Mixture
Models.

Table 3. Comparison of SVM and RVM classifiers on
alphadigit recognition tasks. Both systems used a
segmental hybrid architecture. Note that the RVM has
over an order of magnitude fewer parameters but
requires significantly longer to train. A reduced training
set of 2000 segments was used.
BROWN/JHU/UWASH/MS STATE
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data in the training corpus. For even small speech corpora the number of frames in the train

is on the order of 106. The usual RVM training methods are, thus, rendered impractical.

We are currently researching a number of alternative training schemes. Most of these incor
a reduced set methodology where the optimization problem is solved for a small portion o
training data. The solution for that portion is then used to select other interesting portions
training set that need to be examined. Eventually, an optimum on the entire training s
achieved through the optimization of many smaller sets.

The results of the HMM/SVM hybrid system indicate a need to automatically incorpo
segmentation variation into the training process. HMMs offer a principled approach to
problem via the EM-based Baum-Welch algorithm. Our continued research aims to cre
similar algorithm for training HMM/RVM systems. The RVM will replace the Gaussian as
frame-level emission distribution in the HMM state. Iterative reestimation formulae wh
describe cycles of Baum-Welch statistical accumulation (the expectation step) followe
Bayesian RVM training (maximization step) will be derived. In building this training algorith
we must address issues of iterative and monotonic convergence and stopping criteria. S
work that has been developed for connectionist HMM/ANN systems will serve as reference
BROWN/JHU/UWASH/MS STATE PAGE 15 NSF ITR: AWARD 0085940
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08/15/00 — 08/14/01: RESEARCH AND EDUCATIONAL ACTIVITIES

In the first year of this project, we focused our efforts in two core areas:

• Parsing Technology : intimately coupling parsing technology with speech recognition technology
and evaluating performance on conversational speech.

• Risk Minimization in Acoustic Modeling : developed a new acoustical modeling framework based
on the principle of risk minimization using relevance vector machines; developed baseline
recognition results for a related approach based on support vector machines.

We also began work on the integration of prosodic information into speech recognition
parsing. We developed a format for interfacing prosody output with our parser. We reviewe
cleaned up transcriptions of a prosodically labeled subset of the Switchboard corpus. W
discussed strategies for incorporating prosody into the search process in speech recognitio

A project kickoff meeting was held at Johns Hopkins University in June to coordinate the wor
this project. All organizations involved in this project were present at this meeting. Discuss
focused on three major topics: parsing, integration of prosody, and the development of res
to support this research. Plans were developed to begin evaluating the impact of parsing u
lattice rescoring approach, and to investigate the resources required to develop a time-a
version of the Penn Treebank corpus that will be used for prosodic modeling. Other topi
discussion included some preliminary results on a hybrid speech recognition system
Support Vector Machines. Our next joint project meeting is planned for early June’2002.

E. Parsing Technology

We have begun research into applying parsing technology to speech. While our ultimate goa
intimately couple parsing technology with speech recognition technology, clearly a first step
demonstrate that current parsing technology is in fact compatible with the kind of languag
occurs in naturally-occurring speech, and demonstrating that current parsing technology ca
reasonable job of parsing speech transcripts is an important first step. State-of-the-art sta
parsers are invariably trained on Treebank training data, and the recent release of a tree
portion of the Switchboard corpus by the LDC permitted us to train such a parser on sp
language transcripts. We have two papers that have already appeared in prestigious confe
and one new result which we expect to submit to a 2002 conference. Charniak and Johnso
investigated the performance of state-of-the-art parser technology when applied to s
transcripts. Current parsing technology has been primarily developed using written ma
indeed, the best high-performance statistical parsers available today are based on Wall
Journal newspaper texts, and it was an open question whether this technology is applica
spoken language.

Transcribed speech differs from edited written text in that it contains disfluencies of various k
The two major types of disfluencies we considered in this work are interjections (e.g., “u
parentheticals (e.g., “Sam is, I think, insane”) and speech repairs (e.g., “I told my brother, ug
sister I’d be late”). Interjections are extremely easy to recognize using standard part-of-s
tagging techniques, and there has been speculation in the literature that interjections p
valuable clues to phrase boundaries (we describe empirical an evaluation of this hypo
below). Written text also contains parentheticals, and these do not seem to cause current
technology any particular problems. However, in a pilot experiment we determined our sta
BROWN/JHU/UWASH/MS STATE PAGE 16 NSF ITR: AWARD 0085940
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statistical parser, even when trained from a Switchboard speech transcript treebank that ide
speech repairs, fails to identify any speech repairs in the test corpus. This is not too surp
since modern statistical parsers function by modeling the tree-structured head-to
dependencies in a normal natural language sentence, but speech repairs do not seem
included in such dependencies. Charniak and Johnson [10] present a simple architectu
parsing transcribed speech in which an edited-word detector first removes such words fro
sentence string, and then a standard statistical parser trained on transcribed speech pa
remaining words. The edit detector achieves a misclassification rate on edited words of
(TheNULL -model, which marks everything as not edited, has an error rate of 5.9 %.) To eva
our parsing results we introduce a new evaluation metric, the purpose of which is to
evaluation of a parse tree relatively indifferent to the exact tree position ofEDITED nodes. By
this metric the parser achieves 85.3\% precision and 86.5\% recall; results which are comp
with the best written text parsing results of just a few years ago.

In [11], we investigated the use of our parsing model as a language model. Language mod
course, are used in speech recognition systems to distinguish between likely and unlikely
strings proposed by the speech recognizer’s acoustic model. Most speech recognition syste
the very simple trigram language model, but recently there has been increased interest in
parsing for this task. However, the previous parsers used for this purpose have not perf
parsing tasks at state-of-the-art levels. This is because the researchers assumed that any l
model would have to work in a strict left-to-right fashion. Unfortunately, the best statist
parsers are “immediate-head” parser — our name for a parser that conditions all events b
constituentc upon the head ofc. Because the head of a constituent may appear in the middle
the end (e.g., the head of a noun-phrase is typically the right-most noun) immediate head p
cannot work in a strict left-to-right fashion. However the reasons for preferring strict-left-to-r
are not iron-clad and we were interested in determining if better parsing performanc
immediate-head parsers would lead to a better language model. In the paper we presen
immediate-head language models. The perplexity for both of these models significantly im
upon the trigram model base-line as well as the best previous grammar-based language mo
the better of our two models these improvements are 24% and 14% respectively. We also
evidence that suggests that improvement of the underlying parser should significantly impro
model’s perplexity. Since these models do not use prosodic information that most assume
help in parsing, we believe that even in the near term there is a lot of potential for improvem
immediate-head language models. Finally we note that this paper received the “Best Paper”
at ACL2001.

We now turn to our current research in the area of parsing speech data. As reported abov
widely believed that punctuation, interjections and parentheticals all provide useful cues to p
boundaries, and therefore their presence ought to improve parser performance. Pr
experimentation with written texts had shown that removing punctuation from written t
decreases parser performance significantly, and indeed, finding prosodic cues that conve
the same information as punctuation is one of the goals of our future research. Howeve
preliminary step we decided to empirically evaluate the usefulness of punctuation, interjec
and parentheticals in parsing of speech transcripts. Our method of evaluation is to sele
remove each of these in turn from the training corpus, and then evaluate the accuracy
parser’s recovery of linguistically important structural details from a version of the test co
from which the same elements were removed. Together with Donald Engel (a student at Br
BROWN/JHU/UWASH/MS STATE PAGE 17 NSF ITR: AWARD 0085940
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Charniak and Johnson are systematically investigating the effect that punctuation, interje
and parethenticals have on parsing speech transcripts. As expected from the written text s
punctuation supplies useful information for parsing spoken language transcripts,
systematically removing punctuation from the training and test corpora reduces parse q
However, contrary to the accepted wisdom, interjections and parenthetical seem not to s
useful information for parsing spoken language transcripts, i.e., systematically removing eit
these elements improves parse quality, at least for our current parser. At this stage we ca
speculate as to why; perhaps parentheticals are integrated into the rest of the sentence invo
structure different to the head-to-head dependency structure used in the parser, and p
interjections interrupt the sequences of dependencies tracked by the parser, in effect splitt
parser’s internal state structure and leading to sparse data problems.

One of the central goals of this project is to integrate natural language parsing (which has
largely developed with respect to written texts) with speech recognition. As described abov
have demonstrated that parsing technology can be successfully applied to speech transcri
we have shown that the kinds of syntactic structures posited by a statistical parser can fo
basis for a high-performance language model. These results suggest that a combined
recognition/parsing system should perform extremely well. There is still a substantial amou
engineering and scientific work to be performed before we have achieved that integr
Currently we are investigating just what the interface between the speech recognition and p
components should be in a combined system. It turns out that the basic data structures i
component — lattices in speech recognition, charts in parsing — are in principle q
compatible; theoretically at least one could imagine running a parser in parallel with an aco
model (i.e., the parser would be the language model). This is a bold and attractive architectu
we suspect that at the current stage it is impractical; the number of word hypotheses would s
overwhelm the parser. We are thus investigating ways of pruning the hypothesis space (perh
Figure 1. An SVM balances the ability to model a particular training set with generalization to other data. A
feature of this machine is an ability to gracefully trade-off knowledge about the training data and the
probability of error for unseen data. SVMs have proven to be very successful on several tasks including
handwriting recognition, speaker identification, and vowel classification. SVMs have the ability to learn
nonlinear decision regions using principles of discrimination. No assumptions about the underlying
distributions are made — no parametric forms are used to build the decision surfaces.
BROWN/JHU/UWASH/MS STATE PAGE 18 NSF ITR: AWARD 0085940
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using a standard trigram language model) a
of compacting the set of hypotheses (perha
by using sausages instead of lattices); probab
some combination of the two will turn out to be
viable.

Other speech/parsing work we anticipate fo
this coming year will include looking at
features that have been found to improv
trigram language models that are not include
in our language models to see if, as one mig
anticipate, they improve our parsing languag
models as well. This would include word
clustering, caching, and simply training o
more data (This last is not as easy for parsin
models as we do not have more hand-pars
data, and thus would have to use machin

parsed data.) We also hope to start work on the integration of prosody with parsing, though
a more ambitious project.

F. Risk Minimization in Acoustic Modeling

An important goal in making speech recognition technology more pervasive is to improv
robustness of the acoustic models. Language models, for example, tend to port across d
much better than acoustic models. Learning paradigms for language models can fairly
extract the domain-independent information, and don’t have to deal with difficult problems
as the separation of the underlying speech spectrum from channel and ambient cond
Though one might argue that even language models are susceptible to overtraining and a
generalization, the degree to which this corrupts system performance in a new domain is
less severe. Acoustic models often require extensive training or adaptation, and this, in

Table 1. A summary of performance of an SVM-
based hybrid system on the most common phone
confusions for Alphadigits. In some cases, the
reduction in error rate is over 50%.

phone pair
SVM

misclassification
rate

HMM
misclassification

rate

f <=> sil 14.6 13.1

r <=> l 11.9 17.8

s <=> sil 37.5 42.4

s <=> z 9.7 17.8

t <=> p 8.7 18.1

t <=> d 9.6 22.2
Conventional
HMM

Feature
Vectors

N-best
Alignments

MLP
Likelihood

Computation

SVM
Classifiers

Feature
Vectors

Acoustic
Likelihood
Figure 2. An overview of a hybrid HMM/SVM system being developed to improve the robustness of a
speech recognition system.
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requires the development of extensive application-specific data collection. The net effect i
the cost of developing new applications is very high.

A guiding principle we have in acoustic modeling is that of Occam’s Razor: a model that m
less assumptions about the data will prove to be more robust. Further, we believe that we
gracefully mix representation and discrimination in our models. Intelligent machine lear
seems to be a crucial issue as acoustic models can easily learn details of the acoustic chann
the training data, making them less portable to new applications where the channel, microp
or ambient environment are different. A promising new framework for machine learning in w
a balance between generalization and discrimination can be struck is based on the principle
minimization [12], and is known as a Support Vector Machine [13]. A summary of the benefi
the SVM approach is shown in Figure 1.

The goal in the first year of this project was to explore these models in the context of a rea
LVCSR task. Our primary focus has been kernel-based methods, which include two impo
related techniques: the Support Vector Machine (SVM) and the Relevance Ve
Machine (RVM) [14]. On preliminary experiments involving phone classification, SV
performed significantly better than HMMs [15]. These results are summarized in Table 1. Fo
six most confused phone pairs of an Alphadigit task, SVMs nearly halved the error rate, wh
a significant reduction for this type of experiment.

Our initial experiments were constructed using a hybrid HMM/SVM system as shown in Figu
In this system, we generate N-best lists using a conventional HMM speech recognizer. W
use the same system to generate time alignments. The segments identified in thes
alignments are then rescored using likelihoods generated by SVM phone classifiers. The st
Gaussian statistical models are replaced with discrimination-based SVM models.

One problem in constructing this system was how to map distances computed by the
classifier to posterior probabilities, which are needed by the HMM speech recognition sy
(more precisely, the Viterbi search engine used in the HMM-based speech recognition syste
typical solution to this problem that has been used extensively in the neural network literatur
fit a sigmoid function to the distribution of distances. However, we have recently observed
this process tends to overestimate confidence in classification. We are revisiting this iss
subsequent research described below.

We have also had to overcome a number of other mundane but important problems related
recognition system to make these experiments possible. Because of the computational com
of the approach, we also needed to develop an iterative training scheme in which we
classifiers on small subsets of the data and combine these classifiers (rather than training
the larger data set). We use an approach known as “chunking” [16,17] which has been sho
provide good convergence while significantly reducing computational requirements.

The SVM system overall delivered a 1% absolute (10% relative) reduction in word e
rate (WER) on the Alphadigits task described above, reducing the absolute error rate from 1
11%. Such a small improvement is somewhat discouraging given the computational comp
of this approach. We believe a major limitation of this system is the dependence on
BROWN/JHU/UWASH/MS STATE PAGE 20 NSF ITR: AWARD 0085940
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HMM-based N-best lists and segmentations. Hence, we are developing approaches in wh
SVM-based classifier is integrated into the training process.

A natural way to do this is to modify the concept of an SVM to incorporate probabilistic mo
directly. The Relevance Vector Machine (RVM) [14] attempts to overcome the deficiencies o
SVM by incorporating a probabilistic model directly into the classifier rather than using a l
margin classifier [14]. The principle attraction of the RVM is that it delivers compara
performance as an SVM, but uses much fewer parameters. It is also much more computat
efficient.

A major challenge in incorporating RVM models directly into the recognition training proces
the development of practical and efficient closed-loop training techniques based on EM prin
that demonstrate good convergence properties. Many of these discrimination-based tech
involve some form of nonlinear optimization that is unwieldy and prone to divergence probl
We are currently developing the RVM optimization process in a Baum-Welch training framew
so that the parameters of these models can be estimated in a closed-loop process on large
of data. We expect to complete this work in early fall of 2001.

Finally, the software being developed on this part of the project is being implemented within
public domain speech recognition system [18]. Pieces of this system will be included in
upcoming release. The core of the system consists of two new classes, SupportVectorMach
RelevanceVectorMachine, that are part of our pattern recognition classes. We also exp
release an application note shortly describing the use of the core pattern recognition engin
will release the hybrid system by the end of 2001. We also expect to have completed large
pilot experiments on spontaneous speech data at that time.
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