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ABSTRACT
In this paper, we present the analysis of the large vocabulary
baseline experiment results that were conducted to benchmark
the WI007 standard frontend. The results show that the
increase in thesampling frequencyfrom 8 kHz to 16 kHz
improves in the performance significantly only for noisy condi-
tions. Similarly, utterance detectionresulted in significant
improvement only on noisy conditions. Moreover, these
improvements due to endpointing are not visible with matched-
conditions. The lossy VQ basedcompressionalgorithm is
robust because it did not result in significant degradation.
Model Mismatchdue to mismatched training and testing condi-
tions resulted in significant degradations. With sampling fre-
quency as 16 kHz, the average WER degraded from 38.0% to
55.5% due tomodel-mismatch. Similarly, the best performance
is seen on matchedmicrophone conditions. The performance
on all thesix test noisy conditionsdegraded, even when the
training conditions were exposed to similar noise conditions.

1.   INTRODUCTION
With the increase in the compute power of the miniature
mobile devices such as cell phones, the standardization of the
communication protocols, the advancement of the ASR tech-
nology, and popularity of the mobile devices, speech recogni-
tion has become a standard application provided on the mobile
devices such as cell-phones. One of the many architectures
popular for such applications is the Client/Server Distributed
Speech Recognition (DSR) architecture. The Aurora Standard
for DSR [1] is shown in Figure 1. The features are extracted,
compressed, framed using an standard error-detection-and-cor-
rection algorithm on the client, and then transmitted over the
noisy channel. These features are then recovered at the server
side, and used for recognition. The key advantage of this
approach is the ability to extract features on terminal devices
with tiny compute power in real time. Because these features
are used for recognition on the server-end, sophisticated noise-
robust algorithms and recognition algorithms can be employed
to boost the recognition performance.

The Aurora Evaluations 2001, conducted by the DSR Working
Group, was aimed at the standardization of an advanced front
end (AFE-WI008) [1]. The performance of the AFE-WI008
had to be at least equal to the existing MFCC WI007 standard

front end [2], and significantly better in the demanding adver
conditions. For large-vocabulary task, the aim was to have an
least 25% relative improvement in the average recognition p
formance over various test conditions. In this paper, we d
cuss, and analyze the baseline large vocabulary experime
aimed at benchmarking WI007 frontend. These baseline exp
iments were designed to calibrate the six focus conditions
sampling frequency reduction(16 kHz and 8 kHz), utterance
detection (influence of endpointing), compression(a vector
quantization-based compression scheme),model mismatch
(mismatched training and testing conditions),microphone vari-
ation (two microphone conditions available in the WSJ0 tas
[2]), and additive noise (six noise types collected from stree
traffic, train stations, cars, babble, restaurants and airports
varying signal-to-noise ratios).

2.   EXPERIMENTAL SET-UP
All the baseline experiments employed state-tied cross-wo
speaker-independent triphone acoustic models with four Ga
sian mixtures per state. A single pass ngram decoding based
dynamic-programming search guided by a standard bigra
language model for WSJ0 task [3] was performed. The pronu
ciations in the lexicon were extracted from the publicly avai
able CMU dictionary (v0.6) [4] with some local additions. This
lexicon is based on the phone set containing 41 phones t
includes the sp and sil. A three emission state left-to-rig
topology defined the structure of the phonetic models. All th
MAPSSWE significance tests [5] were conducted at a signi
cance level of 0.1%. All the defaults parameters were set to
values of our best 16 mixture WSJ0 system [6] with a WER o
8.3%. Table 1 shows the comparison of this system to the sta
of-the-art on comparable technology. The principal differenc
between the CU system [7] and our system seems to be a p
prietary lexicon. However, we followed a three-step approa
to reduce the overall computational-time because of the limit

1.This material is based upon work supported by the European
Telecommunications Standards Institute (ETSI). Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the ETSI.  Figure 1: Aurora Standard for DSR architecture.
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computational-resource availability for Aurora Evaluations[6].

• Cut down the test-set by half to save the decoding time by
50% without significantly influencing the WER.

• Prune the beams to save the decoding time by a factor of 6
with a minimal degradation in the performance.

• train up to 4 mixtures instead of the 16 mixtures to shorten
the computational time by a factor of 7/9 with a minimal
degradation in the system performance.

Front-end: The ETSI frontend WI007ES 201 108 v1.1.2[2]
was chosen as the baseline for Aurora Evaluations. It is a stan-
dard MFCC front-end that extracts the 13 cepstral coefficients
and log-energy to form a 14 dimensional feature vector at each
frame. The frame length and window size is 10 msecs and
25 msecs, respectively. These feature vectors are compressed
though a standard lossy vector quantization algorithm to
reduce the transmission rate to 3800 b/s. At the server-end, the
14-dimensional feature vector is reconstructed using the stan-
dard decompression algorithm. For all the experiments, the
zeroth order cepstral coefficient was thrown to form the 13
dimensional feature vectors. The delta and double-delta coeffi-
cients were computed on the fly to get 39 dimensional vectors.

LVCSR Toolkit: The state-of-the-art public domain ISIP Proto-
type system [6] was used for the experimentation. This toolkit
efficiently and transparently handles tasks of varied complex-
ity, from connected digits to spontaneous conversations.

Database: The DARPA WSJ0 [3] has two-channel recordings
of the same utterances that were made at 16 kHz. Channel 1
consists of the same microphone for all speakers — a Sen-
nheiser HMD-414 close-talking microphone. The second chan-
nel included a sampling of 18 different types of microphones.
A downsampled version of this task at 8 kHz was created [8].
The November 92 NIST evaluation set is a speaker-indepen-
dent set consisting of 330 utterances. A 166 utterance eval sub-
set was used for the experimentation[6].

The processed versions of the training and evaluation utter-
ances were generated to simulate both the filtered and additive
noise conditions [8]. The G.712 filtering was used to simulate
the frequency characteristics at an 8 kHz sample frequency and
P.341 filtering was used for simulation at 16 kHz. The Training
Set 1 consists of the filtered version of the SI-84 training set
(7138 utterances) recorded with the Sennheiser microphone.

For Training Set 2, the filtered 7138 training utterances are
divided into two blocks: 3569 utterances (half) recorded with
the Sennheiser microphone, and the remaining half recorded
with a different microphone (18 different microphone types
were used). No noise is added to one-fourth (893 utterances) of
each of these subsets. To the remaining three-fourths (2676
utterances) of each of these subsets, 6 different noise types
(car, babble, restaurant, street, airport, and train) were added at

randomly selected SNRs between 10 and 20 dB. The goal w
an equal distribution of noise types and SNRs. Thus, we h
one clean set (893 utterances) and 6 noisy subsets (446 u
ances each) for both the microphone conditions.

Fourteen evaluation sets were defined in order to study the d
radations in speech recognition performance due to mic
phone conditions, and noisy environments. Each of the filter
versions of the evaluation set recorded with Sennheiser mic
phone and second microphone were selected to form the t
eval sets. The remaining 12 subsets were defined by rando
adding each of the 6 noise types at randomly chosen SN
between 5 and 15 dB for each of the two microphone type
The goal was to have an equal distribution of each of the
noise types and the SNR with an average SNR of 10 dB.

3.   ANALYSIS

3.1   Sample Frequency Reduction

For Training Set 1, degradations due to a reduction in sampli
frequency from 16 kHz to 8 kHz did not follow any trend [6].
However, for Training Set 2, statistically significan
degradations in performance were observed on the Sennhe
microphone conditions (Test Sets 3-7) [6]. The performance
four sample conditions on both the Training sets is shown
Table 2 and 3. The overall frequency response of the tw
microphone conditions on the speech data of a typic
utterance as shown in Figure 2 demonstrates that
Sennheiser microphone preserves high frequency informat
better than the second microphone condition.

However, no significant degradation due to sampling frequen
reduction is observed on matched conditions (Sennhei
Microphone) — training on Training Set 1 and decoding o
Test Set 1. The additional information provided by hig
frequencies (between 4 kHz and 8 kHz) does not contribute
any additional improvement in recognition performance.

3.2   Utterance Detection

The utterance detection resulted in a significant improveme
in performance on Test Sets 2-14 when the system was trai
on Training Set 1 [6]. Two sample test conditions in Table
show that the reduction in insertion errors is primaril
responsible for improvement in the performance. In this cas
the “silence” model learned only pure silence during trainin
because Training Set 1 consists of only clean data, and he
did not represent a good model of the actual background noi
Without endpointing, the noisy silences were interpreted as t
non-silence words, resulting in insertion type errors.

In contrast, for Training Set 2, a significant improvement i
performance was detected only for Test Set 8 [6]. A reductio
in the number of deletions, rather than insertions, w
primarily responsible for this improvement. In other words
because the training conditions contained ample samples of
noise conditions, the non-speech segments were mode
adequately by the silence model and hence, the insertion e
rate did not increase significantly on the noisy test condition

Site Acoustic Model Type Language Model WER

ISIP xwrd/gi bigram 8.3%

CU [7] xwrd/gi bigram 6.9%

Table 1: A comparison of performance reported in the
literature on the WSJ0 SI-84/Nov’92 evaluation task.
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3.3   Compression

No significant degradation in performance due to split vector
(VQ) compression was detected for Training Set 1 for both the
sampling frequencies [6]. Because there is no significant
degradation for Test Set 1 which is a matched condition, it is
natural to draw a conclusion that the split VQ algorithm will
not significantly degrade the performance of the system.
However, there was a significant degradation in performance
for five noisy conditions (3, 8, 9, 10, 12) at a 16 kHz sampling
frequency and two noisy conditions (7, 11) at an 8 kHz
sampling frequency on Training Set 2 [6]. We have not found a
consistent explanation as to why these particular noise
conditions were adversely affected.

3.4   Model Mismatch

The best recognition performance was observed on matched
training and testing conditions (Training Set 1 and Test Set 1),
when all the utterances were recorded with a Sennheiser
microphone, as shown in Figure 3. For all other conditions
involving Training Set 1, the recognition performance
degraded significantly. Systems trained on Training Set 2
performed significantly better than those trained on Training
Set 1 across all noise conditions. These trends were consistent
for both the sampling frequencies and both the compression
conditions [6]. Because training is based on a maximum
likelihood parameter estimation process, high performance
recognition can only be achieved when the test conditions to
generate feature vectors are similar in terms of means,
variances, etc. If there are consistent differences in SNR,
background noise, or microphone, there will be a significant
degradation in performance without any adaptation scheme.

3.5   Microphone Variation

In general, the Sennheiser microphone performed significan
better than the second microphone condition for all condition
as shown in Table 5. The first cell in this table corresponds
Training Set 1, which consists of clean utterances record
with a Sennheiser microphone, and Test Set 1, which cons
of similar data. The second cell in the first row represents
mismatched condition in which the test set was recorded on
different microphone. There was a significant increase in t
word error rate, from 16.2% to 37.4%. The same argument
model-mismatch discussed in the previous section can
extended to explain this degradation. The same trend
observed on the car noise condition (Test Sets 2 and 9).

Training Set 2 has half of the utterances recorded on the sa
Sennheiser microphone and the other half on any one of the
microphone types. With the Baum-Welch training algorithm,
maximum likelihood based parameter estimation method, th
fact implies that models trained on Training Set 2 quickl
converge towards the Sennheiser microphone in terms of th
means and the covariances [9]. Hence, both the clean (Test
1) and car (Test Set 8) conditions for the second micropho
result in significant degradation in recognition performance,
shown in the second row of the Table 5. Note also that the la
three cells in the second row, which correspond to vario
noise conditions, show less of a degradation in performan
than the corresponding conditions in the first row. So there
some value in exposing the models to noise during the trainin

3.6   Additive Noise

Severe degradation is observed for all the noise conditions a
at both the sample frequencies. However, the severity of t
e derived
the
 Figure 2: Comparison of the magnitude of the frequency response of the Sennheiser microphone and the second microphon
from the speech segment from the utterance id441c020b, digitized at 16 KHz. The high quality Sennheiser microphone preserves
frequencies above 3.5 KHz while the second microphone filters the high frequencies.
Sample.Frequency Set 1 Set 3 Set 8 Set 10

16 kHz 19.2% 28.5% 45.0% 47.2%

8 kHz 19.2% 37.6% 29.7% 48.3%

Sample Frequency Set 1 Set 3 Set 8 Set 10

16 kHz 14.0% 57.2% 52.7% 74.3%

8 kHz 16.2% 62.2% 37.4% 69.8%
Table 2: A comparison of the WER for16 kHz and 8 kHzsample
frequencies forTraining Set 1for 4 sample test sets. Test se
conditions which are statistically significant at a 0.1%
significance level are indicated by a boldface label.
t
Table 3: A comparison of the WER for16 kHz and 8 kHzsample
frequencies forTraining Set 2 for 4 sample sets. Test set
conditions which are statistically significant at a 0.1%
significance level are indicated by a boldface label.
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degradation can be limited by exposing the models to noise
conditions during the training process. In Figures 3 and 4, we
demonstrate that the severity of the degradation in the noisy
conditions is reduced by training the models on Training Set 2,
which contains samples of the noise conditions. An important
point to note is that these degradations are still significant
compared to the clean condition. Similar trends were observed
when the feature vectors were compressed [6].

4.   SUMMARY
In this paper, we presented the WSJ0 based large vocabulary
system for the Aurora evaluations 2001. We also presented the
analysis of the results from the baseline experiments for these
evaluations. These experiments were aimed at calibrating the
performance of the standard MFCC WI007 frontend on the six
focus conditions — sampling frequency reduction, utterance
detection, compression, model-mismatch, microphone varia-
tion, and additive noise. The future work will include tuning
the decoder parameters on the site-specific front ends to evalu-
ate the influence of parameter-tuning on the overall WER.
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 Figure 3: Comparison of the WER for six noise conditions a
8 kHz. Training Set 1 was used for Training in this case. Statisti
cally significant test conditions are indicated by a boldface labe
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 Figure 4: Comparison of the WER for six noise conditions a
8 kHz. Training Set 2 was used for Training in this case. Statisti
cally significant test conditions are indicated by a boldface lab
Table 4: A comparison of experimental results forwithout and
with endpointeddata forTraining Set 1at16 KHzwith no feature
vector compression. The two sample test sets demonstrate th
reduction in insertion type errors are primarily responsible fo
the significant reduction in WER.
at
r

Table 5: A significant performance degradation occurs for th
second microphone conditionon both training sets. On Training
Set 1, the models are representative of the Sennhei
microphone condition and hence, the performance dro
significantly due to model mismatch on the remainin
conditions. The models trained on Training Set 2, which ha
still been exposed to significant amounts of the Sennheiser d
do slightly better on the other noise conditions.
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