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 Figure 1: The Aurora standard for a DSR architecture.
Performance Analysis of the Aurora Large Vocabulary Baseline System1
Abstract
In this paper, we present the design and analysis of a speech
recognition system that was used to conduct the ETSI Aurora
large vocabulary evaluation. The experimental paradigm is
presented along with the results from a number of experiments
designed to minimize the computational requirements for the
system. It is shown that increasing thesampling frequency
from 8 kHz to 16 kHz improves performance significantly only
for the noisy test conditions.Utterance detectionresulted in
significant improvements only on the noisy conditions for the
mismatched training conditions. Use of the DSR standard lossy
VQ-basedcompressionalgorithm did not result in a significant
degradation in performance. A mismatch between training and
testing conditions (model mismatch)resulted in a 300%
relative increase in WER. Mismatches in microphones also
resulted in 200% relative increase in WER. The Aurora LV
baseline system achieved a WER of 14.0% on the standard 5K
Wall Street Journal task, and required 4 xRT for training and
15 xRT for decoding (on an 800 MHz Pentium processor).

1.   Introduction
Mobile computing devices still lack sufficient computing
power and memory to perform large vocabulary continuous
speech recognition (LVCSR). Client/server architectures are
one potential solution to this bottleneck. Mobile devices do
have sufficient computing resources to handle some
components of the problem, such as feature extraction. One
popular architecture for such applications is the Client/Server
Distributed Speech Recognition (DSR) architecture [1] shown
in Figure 1. The main advantage of this approach is the ability
to extract features on small terminal devices which can exploit
sophisticated noise enhancement techniques specific to the
terminal device to improve recognition performance.

The goal of the ETSI Aurora large vocabulary (ALV)
evaluation was to measure the relative performance of different
front ends on a large vocabulary system using sub-word
models to supplement the performance calibration on small
vocabulary using word models [2]. A noisy version of the
WSJ0 database was chosen as the large vocabulary task [3,4].
The recognizer developed for these evaluations was based on
the system developed by ISIP [5]. This paper presents design
issues associated with the evaluation database and the baseline
recognition system. An extensive analysis of the performance

of the ETSI WI007 front end [1] is also presented. Six focu
test conditions were calibrated using speech recognition wo
error rate as the metric:sampling frequency reduction(16 kHz
and 8 kHz), utterance detection(influence of endpointing),
compression (a vector quantization-based compressio
scheme),model mismatch (mismatched training and testing
conditions),microphone variation(two microphone conditions
available in the WSJ0 task [3]), andadditive noise (six noise
types collected from street traffic, train stations, cars, babb
restaurants and airports at varying signal-to-noise ratios).

2.   Experimental Design
The 5,000 word task for the WSJ0 Corpus [3] was selected
the ALV evaluation because it represents a well-establish
LVCSR benchmark within the community and constitutes
good trade-off between computational resources a
complexity. The November’92 NIST evaluation set was use
for the evaluation data set. Since the original WSJ data w
collected at 16 kHz, an 8 kHz downsampled version wa
created [4]. Processed versions of the data were created
simulate both filtered and additive noise conditions [4]. G.71
filtering was used to simulate the frequency characteristics
an 8 kHz sample frequency and P.341 filtering was used
16 kHz. A filtered version of the SI-84 training set for the
Sennheiser microphone (first channel) was used to constr
the first training set, denoted Training Set 1 (TS1).

For the second training set, the filtered SI-84 utteranc
were divided into two subsets: half recorded with th
Sennheiser microphone and half recorded with a seco
microphone. No noise was added to one-fourth (89
utterances) of each of these subsets. To the remaining thr
fourths (2,676 utterances) of each of these subsets, 6 differ
noise types (car, babble, restaurant, street, airport, and tra

1. This material is based upon work supported by the European Tele-
communications Standards Institute (ETSI). Any opinions, findings,
conclusions or recommendations expressed in this material are those o
the author(s) and do not necessarily reflect the views of ETSI.
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were added at randomly selected SNRs between 10 and 20 dB.
The goal was an equal distribution of noise types and SNRs.
Thus, we had one clean set (893 utterances) and 6 noisy
subsets (446 utterances each) for both microphone conditions.

Fourteen evaluation sets (one clean, six noise conditions x
two microphone conditions) were defined to systematically test
the microphone and noise conditions. Each of the filtered
versions of the evaluation set recorded with the Sennheiser
microphone and second microphone were selected to form two
of the 14 evaluation sets (sets no. 1 and 7 respectively). The
remaining 12 subsets were defined by adding each of the 6
noise types at randomly chosen SNRs between 5 and 15 dB for
each of the two microphone types. The SNR averaged across
these 12 subsets was designed to be 10 dB.

All baseline experiments employed state-tied cross-word
speaker-independent triphone acoustic models with four
Gaussian mixtures per state. A single-pass Viterbi beam
search-based decoder was used along with a standard 5K
lexicon and bigram language model [3]. The pronunciations in
the lexicon were extracted from the publicly available CMU
dictionary (v0.6) [6] with some local additions. This lexicon is
based on a phone set containing 41 phones that includes a short
pause and a long pause silence model. A three state left-to-
right topology defined the structure of the phonetic models.

The baseline system used in the evaluation was modeled
after a 16-mixture WSJ0 system [5] with a WER of 8.3%.
Table 1 shows the comparison of this system to the state-of-
the-art for a variety of published systems. It was decided that
adaptation or proprietary lexicons would not be used in this
evaluation, which accounts for a large part of the variation in
performance shown in Table 1.

There was a strong interest in reducing the computational
requirements so that minimal resources would be required to
conduct the evaluation. We followed a three-step approach to
reduce the overall computation time without significantly
compromising the quality of the evaluation:

• Reduced the size of the test set by 50%;

• Adjusted the beam pruning parameters to reduce decoding
time by a factor of 6;

• Used only 4 mixtures per state.

The impact of these changes on performance is summarized
below in Table 2 and documented extensively in [5].

The baseline recognition system is publicly available [5].
The ETSI WI007 ES 201 108 v1.1.2 front end [1] was chosen
for these evaluations. This front end is based on the standard
mel frequency-scaled cepstral coefficients (MFCCs) and
includes a lossy vector quantization compression algorithm

that reduces the transmission bit rate to 4800 b/s.

3.   Analysis
The evaluation of the baseline system on several foc
conditions is described below. All experiments were analyz

using the MAPSSWE significance test with .

3.1   Sample Frequency Reduction

The first focus condition we explored was sample frequenc
For Training Set 1 (TS1), degradations due to a reduction
sampling frequency from 16 kHz to 8 kHz did not follow any
trend [5]. However, as shown in Figure 2, for
Training Set 2 (TS2), statistically significant degradations
performance were observed on the Sennheiser microph
conditions (Test Sets 3-7). Statistically significant te
conditions at a 0.1% significance level are indicated by
boldface label.

The overall frequency response of the two microphon
conditions is shown in Figure 3. The Sennheiser microphon
as expected, preserves high frequency information better th
the second microphone condition, resulting in slightly bett
performance at a 16 kHz sample frequency. Surprisingly,
similar degradation due to sampling frequency reduction is n
observed on perfectly matched conditions (training on TS1 a
decoding on Test Set 1) [5], which use the Sennheis
microphone. In this case, the additional information provide
by high frequencies (between 4 kHz and 8 kHz) does n
contribute to any additional improvement in recognitio
performance. The spectral information provided by low

p 0.1%=

Site Acoustic Model Type Language Model WER

ISIP xwrd/gi bigram 8.3%

CU [7] xwrd/gi bigram 6.9%

LT [8] xwrd/gi bigram 6.8%

CU [7] xwrd/gd bigram 6.6%

UT[9] xwrd/gd bigram 6.4%

Table 1: A comparison of performance reported in the
literature on the WSJ0 SI-84/Nov’92 evaluation task.

Factor WER
Relative

Degradation

Baseline system (ISIP) 8.3% N/A

Terminal filtering (ISIP) 8.4% 1%

ETSI frontend 9.6% 14%

Beam adjustments (15xRT) 11.8% 23%

Reduce 16 to 4 mixtures 14.1% 20%

50% reduction of eval set 14.9% 6%

Endpointing silences 14.0% -6%

Table 2: Relative degradation in WER due to the three-ste
approach used to reduce computational requirements.

Figure 2:A comparison of the WER for 16 kHz and 8 kHz
sample frequencies on TS2.
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 Figure 3: The Sennheiser close-talking microphone pre
serves frequencies above 3.5 KHz better on the average t
the variety of microphones used on the second channel.
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frequencies (below 4 kHz) is sufficient to reach the upper
bound on performance.

3.2   Utterance Detection

Utterance detection has been used in previous Aurora
evaluations to decouple noise cancellation strategies from
feature extraction during speech intervals. Utterance detection
resulted in a significant improvement in performance on Test
Sets 2-14 when the system was trained on TS1. Two sample
test conditions in Table 3 show that the reduction in insertion
errors is primarily responsible for the improvement in
performance. In this case, the “silence” model is not a good
match to the background noise for the noisy conditions because
it hasn’t been exposed to that noise during training. The pure
silence during training because Training Set 1 consists of only
clean data, and hence did not represent a good model of the
actual background noise. Without endpointing, the noisy
silences were interpreted as speech data, resulting in a higher
insertion error rate.

In contrast, for TS2, a significant improvement in
performance was detected only for Test Set 8 [5] (a reduction
in the number of deletions, rather than insertions, was
primarily responsible for this improvement). Because the
training conditions contained ample samples of the noise
conditions, the non-speech segments were modeled adequately
by the silence model and hence, the insertion error rate did not
increase significantly on the noisy test conditions.

3.3   Compression

No significant degradation in performance due to split vector
(VQ) compression was detected for TS1 for both sample

frequencies. Because there is no significant degradation
Test Set 1, which is a matched condition, we might draw
conclusion that the split VQ algorithm will not significantly
degrade the performance of the system.

However, there was a significant degradation i
performance for five noisy conditions (3, 8, 9, 10, 12) at
16 kHz sampling frequency and two noisy conditions (7, 11)
an 8 kHz sampling frequency on TS2 [5]. We have not found
consistent explanation as to why these particular noi
conditions were adversely affected, but believe it warrants
closer study of the compression algorithm for noisy data.

3.4   Model Mismatch

The best recognition performance was observed on match
training and testing conditions (TS1 and Test Set 1), when
the utterances were recorded with a Sennheiser microphone
shown in Figure 4. Because training is based on a maximu
likelihood parameter estimation process, high performan
recognition can only be achieved when the test conditions
generate feature vectors are similar in terms of mean
variances, etc.

For all other conditions involving TS1, the recognition
performance degraded significantly. Because there a
consistent differences in SNR, background noise,
microphone between the training and testing conditions, the
were significant degradations in performance. Adaptatio
schemes might have remedied this problem. Systems train
on TS2 performed significantly better than those trained
TS1 across all noise conditions. These trends were consis
for both sample frequencies and both compression condition

3.5   Microphone Variation

In general, the Sennheiser microphone performed significan
better than the second microphone condition for all condition
as shown in Table 4. The first cell in this table corresponds
TS1, which consists of clean utterances recorded with
Sennheiser microphone, and Test Set 1, which consists
similar data. The second cell in the first row represents
mismatched condition in which the test set was recorded on
different microphone. There was a significant increase
WER, from 16.2% to 37.4%. The same argument of mode
mismatch discussed in the previous section can be extende
explain this degradation. The same trend is observed on the
noise condition (Test Sets 2 and 9).

TS2 has half of the utterances recorded on the sa
Sennheiser microphone and the other half on any one of the
microphone types. With the Baum-Welch training algorithm,

Sennheiser Microphone
Second Microphone

Set
W/O Endpointing With Endpointing

Sub. Del. Ins. Sub. Del. Ins.

2 41.4% 3.6% 20.1% 40.0% 3.6% 13.0%

9 54.4% 12.3% 15.1% 49.1% 15.1% 10.1%

Table 3:The primary reason for a reduction in WER on TS1 for
utterance detection is shown to be a result of a reduction in the
insertion error rate.

Training
Set

Set 1
(Senn.
Mic.)

Set 8
(Sec.
Mic.)

Set 2
(Senn.
Mic.)

Set 9
(Sec.
Mic.)

1 16.2% 37.4% 49.6% 59.7%

2 18.4% 29.7% 24.9% 37.3%

Table 4: On TS1, performance drops due to a mismatch
microphones for the second microphone condition
Performance on TS2 is slightly better for the noise condition.
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maximum likelihood based parameter estimation method,
models trained on TS2 quickly converge towards the
Sennheiser microphone in terms of their means and the
covariances [10]. Hence, both the clean (Test Set 1) and car
(Test Set 8) conditions for the second microphone result in
significant degradation in recognition performance, as shown
in the second row of the Table 4. Note also that the last three
cells in the second row, which correspond to various noise
conditions, show less of a degradation in performance than the
corresponding conditions in the first row. So there is some
value in exposing the models to noise during the training.

3.6   Additive Noise

Severe degradation is observed for all noise conditions and at
both sample frequencies because no noise compensation or
adaptive techniques were used for these evaluations. However,
the severity of this degradation can be limited by exposing the
models to noise conditions during the training process. In
Figures 4 and 5, we demonstrate that the severity of the
degradation in the noisy conditions is reduced by training the
models on TS2, which contains samples of the noise
conditions. Statistically significant test conditions at a 0.1%
significance level are indicated by a boldface label. An
important point to note is that these degradations are still
significant compared to the clean condition. Similar trends
were observed when the feature vectors were compressed [5].

On TS1 and TS2, it is observed that performance on the car
noise conditions (Test Set 2) is better than for the other noise
conditions (street traffic, train stations, babble, restaurants and
airports). Because the car noise condition can be approximated
as stationary noise, and the other noise conditions are heavily
non-stationary, performance is significantly better because the
simple silence model used can adapt to the background noise.

4.   Summary
In this paper, we have presented an LVCSR system that was
developed for the Aurora large vocabulary evaluation. This
system, which is available in the public domain [5], was
developed using the standard 5K Wall Street Journal (WSJ0)
task, and achieved a performance of 14.0% WER. It runs at
4 xRT for training and 15 xRT for decoding on an 800 MHz
Pentium processor.

We also presented an analysis of the results from these
baseline experiments. It is shown that increasing thesampling
frequency from 8 kHz to 16 kHz results in the significant
performance improvement only for the noisy test conditions.
Utterance detectionresulted in significant improvements only
on the noisy conditions for the mismatched training conditions.
The DSR standard VQ-basedcompressionalgorithm did not
result in a significant degradation in performance. A mismatch
between training and testing conditions (model mismatch)
resulted in a 300% relative increase in WER whereas the
mismatches in microphones resulted in a 200% relative
increase in WER. In a companion paper, we will present a
detailed analysis of the Aurora LV evaluation.
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Figure 4:A comparison of the WER for six noise conditions a
8 kHz on TS1.
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Figure 5:A comparison of the WER for six noise conditions at
8 kHz on TS2.
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