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 Figure 1: The Aurora standard for a DSR architecture.
Performance Analysis of the Aurora III Baseline System1
Abstract
In this paper, we present the design and analysis of a large
vocabulary speech recognition system that was used to conduct
the ETSI Aurora III evaluation. The experimental paradigm is
presented along with the results from a number of experiments
designed to minimize the computational requirements for the
system. It is shown that increasing thesampling frequency
from 8 kHz to 16 kHz improves in the performance
significantly only for the noisy test conditions.Utterance
detection resulted in significant improvements only on the
noisy conditions for the mismatched training conditions. Use
of the DSR standard lossy VQ-basedcompressionalgorithm
did not result in a significant degradation in performance. A
mismatch between training and testing conditions (model
mismatch) resulted in a 300% relative increase in WER.
Mismatches in microphones also resulted in 200% relative
increase in WER. The Aurora III baseline system achieved a
WER of 14.0% on the standard 5K Wall Street Journal task,
and required 4 xRT for training and 15 xRT for decoding (on
an 800 MHz Pentium processor).

1.   Introduction
Mobile computing devices still lack sufficient computing
power and memory to perform large vocabulary continuous
speech recognition (LVCSR). Client/server architectures are
one potential solution to this bottleneck. Mobile devices do
have sufficient computing resources to handle some
components of the problem, such as feature extraction. One
popular architecture for such applications is the Client/Server
Distributed Speech Recognition (DSR) architecture [1] shown
in Figure 1. The main advantage of this approach is the ability
to extract features on small terminal devices which can exploit
sophisticated noise enhancement techniques specific to the
terminal device to improve recognition performance.

The goal of the ETSI Aurora evaluations, conducted by the
DSR Working Group was to standardize the front end used for
such client/server applications (AFE-WI008) [2]. The
performance of the AFE-WI008 had to be at least equal to the
existing MFCC WI007 standard [1] in clean conditions and
significantly better in noisy environments. The performance
goal for the new front end standard was a 25% relative
improvement across all test conditions.

In this paper, we present a design and analysis of the

baseline system used in these evaluations. We calibrated
focus conditions —sampling frequency reduction(16 kHz and
8 kHz), utterance detection (influence of endpointing),
compression (a vector quantization-based compressio
scheme),model mismatch (mismatched training and testing
conditions),microphone variation(two microphone conditions
available in the WSJ0 task [3]), andadditive noise (six noise
types collected from street traffic, train stations, cars, babb
restaurants and airports at varying signal-to-noise ratios). W
also reduced the overall run-time of the system an order
magnitude to facilitate an experimental paradigm designed
minimize the computational requirements.

2.   Experimental Design
The 5,000 word task for the WSJ0 [3] Corpus was select

for the ETSI Aurora III evaluation because it represents a we
established LVCSR benchmark within the community an
constitutes a good trade-off between computational resour
and complexity. The November 92 NIST evaluation set wa
used for the evaluation data set. Since the original WSJ d
was collected at 16 kHz, an 8 kHz downsampled version w
created [4]. Processed versions of the data were created
simulate both filtered and additive noise conditions [4
G.712 filtering was used to simulate the frequenc
characteristics at an 8 kHz sample frequency and P.3
filtering was used at 16 kHz. A filtered version of the SI-8
training set for the Sennheiser microphone (first channel) w
used to construct the first training set, denoted Training Set

For the second training set, the filtered SI-84 utteranc
were divided into two subsets: half recorded with th
Sennheiser microphone and half recorded with a seco
microphone. No noise was added to one-fourth (89
utterances) of each of these subsets. To the remaining thr

1. This material is based upon work supported by the European Tele-
communications Standards Institute (ETSI). Any opinions, findings,
conclusions or recommendations expressed in this material are those o
the author(s) and do not necessarily reflect the views of ETSI.
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fourths (2,676 utterances) of each of these subsets, 6 different
noise types (car, babble, restaurant, street, airport, and train)
were added at randomly selected SNRs between 10 and 20 dB.
The goal was an equal distribution of noise types and SNRs.
Thus, we had one clean set (893 utterances) and 6 noisy
subsets (446 utterances each) for both microphone conditions.

Fourteen evaluation sets (one clean, six noise conditions x
two microphone conditions) were defined to systematically test
the microphone and noise conditions. Each of the filtered
versions of the evaluation set recorded with Sennheiser
microphone and second microphone were selected to form two
of the 14 evaluation sets (sets no. 1 and 7 respectively). The
remaining 12 subsets were defined by adding each of the 6
noise types at randomly chosen SNRs between 5 and 15 dB for
each of the two microphone types. The SNR averaged across
these 12 subsets was designed to be 10 dB.

All baseline experiments employed state-tied cross-word
speaker-independent triphone acoustic models with four
Gaussian mixtures per state. A single-pass Viterbi beam
search-based decoder was used along with a standard 5K
lexicon and bigram language model [3]. The pronunciations in
the lexicon were extracted from the publicly available CMU
dictionary (v0.6) [6] with some local additions. This lexicon is
based on a phone set containing 41 phones that includes a short
pause and a long pause silence model. A three state left-to-
right topology defined the structure of the phonetic models.

The baseline system used in the evaluation was modeled
after a 16-mixture WSJ0 system [5] with a WER of 8.3%.
Table 1 shows the comparison of this system to the state-of-
the-art for a variety of published systems. It was decided that
adaptation or proprietary lexicons would not be used in this
evaluation, which accounts for a large part of the variation in
performance shown in Table 1.

There was a strong interest in reducing the computational
requirements so that minimal resources would be required to
conduct the evaluation. We followed a three-step approach to
reduce the overall computation time without significantly
compromising the quality of the evaluation:

• Reduced the size of the test set by 50%;

• Adjusted the beam pruning parameters to reduce decoding
time by a factor of 6;

• Used only 4 mixtures per state.

The impact of these changes on performance are summarized
below in Table 2 and documented extensively in [5].

The baseline recognition system is publicly available [5].
The ETSI front end WI007 ES 201 108 v1.1.2 [1] was chosen
as the baseline front end for these evaluations. This front end is

based on the standard mel cepstrum approach and include
lossy vector quantization compression algorithm that reduc
the transmission bit rate to 3800 b/s.

3.   Analysis
The evaluation of several focus conditions is describe

below. All experiments were analyzed using the MAPSSW
significance test with a significance level of 0.1%.

3.1   Sample Frequency Reduction

The first focus condition we explored was sampl
frequency. Performance is summarized in Tables 3 and
Statistically significant test conditions at a 0.1% significanc
level are indicated by a boldface label. Fo
Training Set 1 (TS1), degradations due to a reduction
sampling frequency from 16 kHz to 8 kHz did not follow any
trend [5]. However, for Training Set 2 (TS2), statistically
significant degradations in performance were observed on
Sennheiser microphone conditions (Test Sets 3-7).

The overall frequency response of the two microphon
conditions is shown in Figure 2. The Sennheiser microphon
as expected, preserves high frequency information better th
the second microphone condition, resulting in slightly bette
performance at a 16 kHz sample frequency. Surprisingly,
similar degradation due to sampling frequency reduction
observed on matched training conditions, which use th
Sennheiser microphone. The additional information provide
by high frequencies (between 4 kHz and 8 kHz) does n

Sample Frequency Set 1 Set 3 Set 8 Set 10

16 kHz 14.0% 57.2% 52.7% 74.3%

8 kHz 16.2% 62.2% 37.4% 69.8%

Site Acoustic Model Type Language Model WER

ISIP xwrd/gi bigram 8.3%

CU [7] xwrd/gi bigram 6.9%

LT [8] xwrd/gi bigram 6.8%

CU [7] xwrd/gd bigram 6.6%

UT[9] xwrd/gd bigram 6.4%

Table 1: A comparison of performance reported in the
literature on the WSJ0 SI-84/Nov’92 evaluation task.

Factor WER
Relative

Degradation

Baseline system 8.3% N/A

Terminal filtering 11.6% 40%

Beam pruning adjustments 12.5% 8%

16➙ 4 mixtures 14.8% 18%

50% reduction of eval set 14.9% <1%

Endpointing silences 14.0% -6%

Table 2: Relative degradation in WER due to the three-ste
approach used to reduce computational requirements.

Table 3: A comparison of the WER for 16 kHz and 8 kHz
sample frequencies for Training Set 1 for 4 sample test sets.

Sample.Frequency Set 1 Set 3 Set 8 Set 10

16 kHz 19.2% 28.5% 45.0% 47.2%

8 kHz 19.2% 37.6% 29.7% 48.3%

Table 4: A comparison of the WER for 16 kHz and 8 kHz
sample frequencies for Training Set 2 for 4 sample sets.
I am
 not seeing this conclusion. Explain it to me in person....



for
a

n
a
at
a

se
a

on
1),
ser
Frequency in KHz

 Figure 2: The Sennheiser close-talking microphone pr
serves frequencies above 3.5 KHz better on the average t
the variety of microphones used on the second channel.
ed
gh
est
of

re
or
re
n
ed
n
ent
s.

d
or
e
es
ich
w
as
nt
of
be
is

e
18
a

in
s.
s

Magnitude in dB
50

40

30

20

25

35

45

0 1 2 3 4 5 6 8

e-
han

7

contribute to any additional improvement in recognition
performance.

3.2   Utterance Detection

Utterance detection has been used in previous Aurora
evaluations to decouple noise cancellation strategies from
feature extraction during speech intervals. Utterance detection
resulted in a significant improvement in performance on Test
Sets 2-14 when the system was trained on TS1. Two sample
test conditions in Table 5 show that the reduction in insertion
errors is primarily responsible for the improvement in
performance. In this case, the “silence” model is not a good
match to the background noise for the noisy conditions because
it hasn’t been exposed to that noise during training. ed pure
silence during training because Training Set 1 consists of only
clean data, and hence did not represent a good model of the
actual background noise. Without endpointing, the noisy
silences were interpreted as speech data, resulting in a higher
insertion error rate.

In contrast, for TS2, a significant improvement in
performance was detected only for Test Set 8 [5] (a reduction
in the number of deletions, rather than insertions, was
primarily responsible for this improvement). Because the
training conditions contained ample samples of the noise
conditions, the non-speech segments were modeled adequately
by the silence model and hence, the insertion error rate did not
increase significantly on the noisy test conditions.

3.3   Compression

No significant degradation in performance due to split
vector (VQ) compression was detected for TS1 for both sample

frequencies. Because there is no significant degradation
Test Set 1, which is a matched condition, we might draw
conclusion that the split VQ algorithm will not significantly
degrade the performance of the system.

However, there was a significant degradation i
performance for five noisy conditions (3, 8, 9, 10, 12) at
16 kHz sampling frequency and two noisy conditions (7, 11)
an 8 kHz sampling frequency on TS2 [5]. We have not found
consistent explanation as to why these particular noi
conditions were adversely affected, but believe it warrants
closer study of the compression algorithm for noisy data.

3.4   Model Mismatch

The best recognition performance was observed
matched training and testing conditions (TS1 and Test Set
when all the utterances were recorded with a Sennhei
microphone, as shown in Figure 3. Because training is bas
on a maximum likelihood parameter estimation process, hi
performance recognition can only be achieved when the t
conditions to generate feature vectors are similar in terms
means, variances, etc.

For all other conditions involving TS1, the recognition
performance degraded significantly. Because there a
consistent differences in SNR, background noise,
microphone between the training and testing conditions, the
were significant degradations in performance. Adaptatio
schemes might have remedied this problem. Systems train
on TS2 performed significantly better than those trained o
TS1 across all noise conditions. These trends were consist
for both sample frequencies and both compression condition

4.   Microphone Variation
In general, the Sennheiser microphone performe

significantly better than the second microphone condition f
all conditions, as shown in Table 6. The first cell in this tabl
corresponds to TS1, which consists of clean utteranc
recorded with a Sennheiser microphone, and Test Set 1, wh
consists of similar data. The second cell in the first ro
represents a mismatched condition in which the test set w
recorded on a different microphone. There was a significa
increase in WER, from 16.2% to 37.4%. The same argument
model-mismatch discussed in the previous section can
extended to explain this degradation. The same trend
observed on the car noise condition (Test Sets 2 and 9).

TS2 has half of the utterances recorded on the sam
Sennheiser microphone and the other half on any one of the
microphone types. With the Baum-Welch training algorithm,

Sennheiser Microphone
Second Microphone

Set
W/O Endpointing With Endpointing

Sub. Del. Ins. Sub. Del. Ins.

2 41.4% 3.6% 20.1% 40.0% 3.6% 13.0%

9 54.4% 12.3% 15.1% 49.1% 15.1% 10.1%

Table 5:The primary reason for a reduction in WER on TS1 for
utterance detection is shown to be a result of a reduction in the
insertion error rate.

Training
Set

Set 1
(Senn.
Mic.)

Set 8
(Sec.
Mic.)

Set 2
(Senn.
Mic.)

Set 9
(Sec.
Mic.)

1 16.2% 37.4% 49.6% 59.7%

2 18.4% 29.7% 24.9% 37.3%

Table 6: On TS1, performance drops due to a mismatch
microphones for the second microphone condition
Performance on TS2 is slightly better for the noise condition.
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maximum likelihood based parameter estimation method, this
fact implies that models trained on TS2 quickly converge
towards the Sennheiser microphone in terms of their means
and the covariances [10]. Hence, both the clean (Test Set 1) and
car (Test Set 8) conditions for the second microphone result in
significant degradation in recognition performance, as shown
in the second row of the Table 6. Note also that the last three
cells in the second row, which correspond to various noise
conditions, show less of a degradation in performance than the
corresponding conditions in the first row. So there is some
value in exposing the models to noise during the training.

4.1   Additive Noise

Severe degradation is observed for all noise conditions and
at both sample frequencies because no noise compensation or
adaptive techniques were used for these evaluations. However,
the severity of this degradation can be limited by exposing the
models to noise conditions during the training process. In
Figures 3 and 4, we demonstrate that the severity of the
degradation in the noisy conditions is reduced by training the
models on TS2, which contains samples of the noise
conditions. Statistically significant test conditions at a 0.1%
significance level are indicated by a boldface label. An
important point to note is that these degradations are still
significant compared to the clean condition. Similar trends
were observed when the feature vectors were compressed [5].

On TS1 and TS2, it is observed that performance on the car
noise conditions (Test Set 2) is better than for the other noise
conditions (street traffic, train stations, babble, restaurants and
airports). Because the car noise condition can be approximated
as stationary noise, and the other noise conditions are heavily
non-stationary, performance is significantly better because the
simple silence model used can adapt to the background noise.

5.   Summary
In this paper, we have presented an LVCSR system that

was developed for the Aurora III evaluation. This system,
which is available in the public domain [5], was developed
using the standard 5K Wall Street Journal (WSJ0) task, and
achieved a performance of 14.0% WER. It runs at 4 xRT for
training and 15 xRT for decoding on an 800 MHz Pentium
processor.

We also presented an analysis of the results from these
baseline experiments. It is shown that increasing thesampling

frequency from 8 kHz to 16 kHz results in the significant
performance improvement only for the noisy test condition
Utterance detectionresulted in significant improvements only
on the noisy conditions for the mismatched training condition
The DSR standard VQ-basedcompressionalgorithm did not
result in a significant degradation in performance. A mismatc
between training and testing conditions (model mismatch)
resulted in a 300% relative increase in WER whereas t
mismatches in microphones resulted in a 200% relati
increase in WER.
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 Figure 1: The Aurora standard for a DSR architecture.
Performance Analysis of the Aurora III Baseline System1
Abstract
In this paper, we present the design and analysis of a large
vocabulary speech recognition system that was used to conduct
the ETSI Aurora III evaluation. The experimental paradigm is
presented along with the results from a number of experiments
designed to minimize the computational requirements for the
system. It is shown that increasing thesampling frequency
from 8 kHz to 16 kHz improves in the performance
significantly only for the noisy test conditions.Utterance
detection resulted in significant improvements only on the
noisy conditions for the mismatched training conditions. Use
of the DSR standard lossy VQ-basedcompressionalgorithm
did not result in a significant degradation in performance. A
mismatch between training and testing conditions (model
mismatch) resulted in a 300% relative increase in WER.
Mismatches in microphones also resulted in 200% relative
increase in WER. The Aurora III baseline system achieved a
WER of 14.0% on the standard 5K Wall Street Journal task,
and required 4 xRT for training and 15 xRT for decoding (on
an 800 MHz Pentium processor).

1.   Introduction
Mobile computing devices still lack sufficient computing
power and memory to perform large vocabulary continuous
speech recognition (LVCSR). Client/server architectures are
one potential solution to this bottleneck. Mobile devices do
have sufficient computing resources to handle some
components of the problem, such as feature extraction. One
popular architecture for such applications is the Client/Server
Distributed Speech Recognition (DSR) architecture [1] shown
in Figure 1. The main advantage of this approach is the ability
to extract features on small terminal devices which can exploit
sophisticated noise enhancement techniques specific to the
terminal device to improve recognition performance.

The goal of the ETSI Aurora evaluations, conducted by the
DSR Working Group was to standardize the front end used for
such client/server applications (AFE-WI008) [2]. The
performance of the AFE-WI008 had to be at least equal to the
existing MFCC WI007 standard [1] in clean conditions and
significantly better in noisy environments. The performance
goal for the new front end standard was a 25% relative
improvement across all test conditions.

In this paper, we present a design and analysis of the

baseline system used in these evaluations. We calibrated
focus conditions —sampling frequency reduction(16 kHz and
8 kHz), utterance detection (influence of endpointing),
compression (a vector quantization-based compressio
scheme),model mismatch (mismatched training and testing
conditions),microphone variation(two microphone conditions
available in the WSJ0 task [3]), andadditive noise (six noise
types collected from street traffic, train stations, cars, babb
restaurants and airports at varying signal-to-noise ratios). W
also reduced the overall run-time of the system an order
magnitude to facilitate an experimental paradigm designed
minimize the computational requirements.

2.   Experimental Design
The 5,000 word task for the WSJ0 [3] Corpus was select

for the ETSI Aurora III evaluation because it represents a we
established LVCSR benchmark within the community an
constitutes a good trade-off between computational resour
and complexity. The November 92 NIST evaluation set wa
used for the evaluation data set. Since the original WSJ d
was collected at 16 kHz, an 8 kHz downsampled version w
created [4]. Processed versions of the data were created
simulate both filtered and additive noise conditions [4
G.712 filtering was used to simulate the frequenc
characteristics at an 8 kHz sample frequency and P.3
filtering was used at 16 kHz. A filtered version of the SI-8
training set for the Sennheiser microphone (first channel) w
used to construct the first training set, denoted Training Set

For the second training set, the filtered SI-84 utteranc
were divided into two subsets: half recorded with th
Sennheiser microphone and half recorded with a seco
microphone. No noise was added to one-fourth (89
utterances) of each of these subsets. To the remaining thr

1. This material is based upon work supported by the European Tele-
communications Standards Institute (ETSI). Any opinions, findings,
conclusions or recommendations expressed in this material are those o
the author(s) and do not necessarily reflect the views of ETSI.
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fourths (2,676 utterances) of each of these subsets, 6 different
noise types (car, babble, restaurant, street, airport, and train)
were added at randomly selected SNRs between 10 and 20 dB.
The goal was an equal distribution of noise types and SNRs.
Thus, we had one clean set (893 utterances) and 6 noisy
subsets (446 utterances each) for both microphone conditions.

Fourteen evaluation sets (one clean, six noise conditions x
two microphone conditions) were defined to systematically test
the microphone and noise conditions. Each of the filtered
versions of the evaluation set recorded with Sennheiser
microphone and second microphone were selected to form two
of the 14 evaluation sets (sets no. 1 and 7 respectively). The
remaining 12 subsets were defined by adding each of the 6
noise types at randomly chosen SNRs between 5 and 15 dB for
each of the two microphone types. The SNR averaged across
these 12 subsets was designed to be 10 dB.

All baseline experiments employed state-tied cross-word
speaker-independent triphone acoustic models with four
Gaussian mixtures per state. A single-pass Viterbi beam
search-based decoder was used along with a standard 5K
lexicon and bigram language model [3]. The pronunciations in
the lexicon were extracted from the publicly available CMU
dictionary (v0.6) [6] with some local additions. This lexicon is
based on a phone set containing 41 phones that includes a short
pause and a long pause silence model. A three state left-to-
right topology defined the structure of the phonetic models.

The baseline system used in the evaluation was modeled
after a 16-mixture WSJ0 system [5] with a WER of 8.3%.
Table 1 shows the comparison of this system to the state-of-
the-art for a variety of published systems. It was decided that
adaptation or proprietary lexicons would not be used in this
evaluation, which accounts for a large part of the variation in
performance shown in Table 1.

There was a strong interest in reducing the computational
requirements so that minimal resources would be required to
conduct the evaluation. We followed a three-step approach to
reduce the overall computation time without significantly
compromising the quality of the evaluation:

• Reduced the size of the test set by 50%;

• Adjusted the beam pruning parameters to reduce decoding
time by a factor of 6;

• Used only 4 mixtures per state.

The impact of these changes on performance are summarized
below in Table 2 and documented extensively in [5].

The baseline recognition system is publicly available [5].
The ETSI front end WI007 ES 201 108 v1.1.2 [1] was chosen
as the baseline front end for these evaluations. This front end is

based on the standard mel cepstrum approach and include
lossy vector quantization compression algorithm that reduc
the transmission bit rate to 3800 b/s.

3.   Analysis
The evaluation of several focus conditions is describe

below. All experiments were analyzed using the MAPSSW
significance test with a significance level of 0.1%.

3.1   Sample Frequency Reduction

The first focus condition we explored was sampl
frequency. Performance is summarized in Tables 3 and
Statistically significant test conditions at a 0.1% significanc
level are indicated by a boldface label. Fo
Training Set 1 (TS1), degradations due to a reduction
sampling frequency from 16 kHz to 8 kHz did not follow any
trend [5]. However, for Training Set 2 (TS2), statistically
significant degradations in performance were observed on
Sennheiser microphone conditions (Test Sets 3-7).

The overall frequency response of the two microphon
conditions is shown in Figure 2. The Sennheiser microphon
as expected, preserves high frequency information better th
the second microphone condition, resulting in slightly bette
performance at a 16 kHz sample frequency. Surprisingly,
similar degradation due to sampling frequency reduction
observed on matched training conditions, which use th
Sennheiser microphone. The additional information provide
by high frequencies (between 4 kHz and 8 kHz) does n

Sample Frequency Set 1 Set 3 Set 8 Set 10

16 kHz 14.0% 57.2% 52.7% 74.3%

8 kHz 16.2% 62.2% 37.4% 69.8%

Site Acoustic Model Type Language Model WER

ISIP xwrd/gi bigram 8.3%

CU [7] xwrd/gi bigram 6.9%

LT [8] xwrd/gi bigram 6.8%

CU [7] xwrd/gd bigram 6.6%

UT[9] xwrd/gd bigram 6.4%

Table 1: A comparison of performance reported in the
literature on the WSJ0 SI-84/Nov’92 evaluation task.

Factor WER
Relative

Degradation

Baseline system 8.3% N/A

Terminal filtering 11.6% 40%

Beam pruning adjustments 12.5% 8%

16➙ 4 mixtures 14.8% 18%

50% reduction of eval set 14.9% <1%

Endpointing silences 14.0% -6%

Table 2: Relative degradation in WER due to the three-ste
approach used to reduce computational requirements.

Table 3: A comparison of the WER for 16 kHz and 8 kHz
sample frequencies for Training Set 1 for 4 sample test sets.

Sample.Frequency Set 1 Set 3 Set 8 Set 10

16 kHz 19.2% 28.5% 45.0% 47.2%

8 kHz 19.2% 37.6% 29.7% 48.3%

Table 4: A comparison of the WER for 16 kHz and 8 kHz
sample frequencies for Training Set 2 for 4 sample sets.
I am
 not seeing this conclusion. Explain it to me in person....
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contribute to any additional improvement in recognition
performance.

3.2   Utterance Detection

Utterance detection has been used in previous Aurora
evaluations to decouple noise cancellation strategies from
feature extraction during speech intervals. Utterance detection
resulted in a significant improvement in performance on Test
Sets 2-14 when the system was trained on TS1. Two sample
test conditions in Table 5 show that the reduction in insertion
errors is primarily responsible for the improvement in
performance. In this case, the “silence” model is not a good
match to the background noise for the noisy conditions because
it hasn’t been exposed to that noise during training. ed pure
silence during training because Training Set 1 consists of only
clean data, and hence did not represent a good model of the
actual background noise. Without endpointing, the noisy
silences were interpreted as speech data, resulting in a higher
insertion error rate.

In contrast, for TS2, a significant improvement in
performance was detected only for Test Set 8 [5] (a reduction
in the number of deletions, rather than insertions, was
primarily responsible for this improvement). Because the
training conditions contained ample samples of the noise
conditions, the non-speech segments were modeled adequately
by the silence model and hence, the insertion error rate did not
increase significantly on the noisy test conditions.

3.3   Compression

No significant degradation in performance due to split
vector (VQ) compression was detected for TS1 for both sample

frequencies. Because there is no significant degradation
Test Set 1, which is a matched condition, we might draw
conclusion that the split VQ algorithm will not significantly
degrade the performance of the system.

However, there was a significant degradation i
performance for five noisy conditions (3, 8, 9, 10, 12) at
16 kHz sampling frequency and two noisy conditions (7, 11)
an 8 kHz sampling frequency on TS2 [5]. We have not found
consistent explanation as to why these particular noi
conditions were adversely affected, but believe it warrants
closer study of the compression algorithm for noisy data.

3.4   Model Mismatch

The best recognition performance was observed
matched training and testing conditions (TS1 and Test Set
when all the utterances were recorded with a Sennhei
microphone, as shown in Figure 3. Because training is bas
on a maximum likelihood parameter estimation process, hi
performance recognition can only be achieved when the t
conditions to generate feature vectors are similar in terms
means, variances, etc.

For all other conditions involving TS1, the recognition
performance degraded significantly. Because there a
consistent differences in SNR, background noise,
microphone between the training and testing conditions, the
were significant degradations in performance. Adaptatio
schemes might have remedied this problem. Systems train
on TS2 performed significantly better than those trained o
TS1 across all noise conditions. These trends were consist
for both sample frequencies and both compression condition

4.   Microphone Variation
In general, the Sennheiser microphone performe

significantly better than the second microphone condition f
all conditions, as shown in Table 6. The first cell in this tabl
corresponds to TS1, which consists of clean utteranc
recorded with a Sennheiser microphone, and Test Set 1, wh
consists of similar data. The second cell in the first ro
represents a mismatched condition in which the test set w
recorded on a different microphone. There was a significa
increase in WER, from 16.2% to 37.4%. The same argument
model-mismatch discussed in the previous section can
extended to explain this degradation. The same trend
observed on the car noise condition (Test Sets 2 and 9).

TS2 has half of the utterances recorded on the sam
Sennheiser microphone and the other half on any one of the
microphone types. With the Baum-Welch training algorithm,

Sennheiser Microphone
Second Microphone

Set
W/O Endpointing With Endpointing

Sub. Del. Ins. Sub. Del. Ins.

2 41.4% 3.6% 20.1% 40.0% 3.6% 13.0%

9 54.4% 12.3% 15.1% 49.1% 15.1% 10.1%

Table 5:The primary reason for a reduction in WER on TS1 for
utterance detection is shown to be a result of a reduction in the
insertion error rate.

Training
Set

Set 1
(Senn.
Mic.)

Set 8
(Sec.
Mic.)

Set 2
(Senn.
Mic.)

Set 9
(Sec.
Mic.)

1 16.2% 37.4% 49.6% 59.7%

2 18.4% 29.7% 24.9% 37.3%

Table 6: On TS1, performance drops due to a mismatch
microphones for the second microphone condition
Performance on TS2 is slightly better for the noise condition.
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t

maximum likelihood based parameter estimation method, this
fact implies that models trained on TS2 quickly converge
towards the Sennheiser microphone in terms of their means
and the covariances [10]. Hence, both the clean (Test Set 1) and
car (Test Set 8) conditions for the second microphone result in
significant degradation in recognition performance, as shown
in the second row of the Table 6. Note also that the last three
cells in the second row, which correspond to various noise
conditions, show less of a degradation in performance than the
corresponding conditions in the first row. So there is some
value in exposing the models to noise during the training.

4.1   Additive Noise

Severe degradation is observed for all noise conditions and
at both sample frequencies because no noise compensation or
adaptive techniques were used for these evaluations. However,
the severity of this degradation can be limited by exposing the
models to noise conditions during the training process. In
Figures 3 and 4, we demonstrate that the severity of the
degradation in the noisy conditions is reduced by training the
models on TS2, which contains samples of the noise
conditions. Statistically significant test conditions at a 0.1%
significance level are indicated by a boldface label. An
important point to note is that these degradations are still
significant compared to the clean condition. Similar trends
were observed when the feature vectors were compressed [5].

On TS1 and TS2, it is observed that performance on the car
noise conditions (Test Set 2) is better than for the other noise
conditions (street traffic, train stations, babble, restaurants and
airports). Because the car noise condition can be approximated
as stationary noise, and the other noise conditions are heavily
non-stationary, performance is significantly better because the
simple silence model used can adapt to the background noise.

5.   Summary
In this paper, we have presented an LVCSR system that

was developed for the Aurora III evaluation. This system,
which is available in the public domain [5], was developed
using the standard 5K Wall Street Journal (WSJ0) task, and
achieved a performance of 14.0% WER. It runs at 4 xRT for
training and 15 xRT for decoding on an 800 MHz Pentium
processor.

We also presented an analysis of the results from these
baseline experiments. It is shown that increasing thesampling

frequency from 8 kHz to 16 kHz results in the significant
performance improvement only for the noisy test condition
Utterance detectionresulted in significant improvements only
on the noisy conditions for the mismatched training condition
The DSR standard VQ-basedcompressionalgorithm did not
result in a significant degradation in performance. A mismatc
between training and testing conditions (model mismatch)
resulted in a 300% relative increase in WER whereas t
mismatches in microphones resulted in a 200% relati
increase in WER.
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