Signal Processing Tools for Speech Recognition

Julie A. Baca, Hualin Gao
Joseph Picone

Center for Advanced Vehicular Systems (CAVS)
Institute for Signal and Information Processing (ISIP)

Mississippi State University
Mississippi State University

baca@cs.msstate.edu, gao@isip.misstate.edu
picone@isip.msstate.edu

Abstract

The Center for Advanced Vehicular Systems (CAVS), located at Mississippi State University (MSU), is collaborating with regional automotive manufacturers such as Nissan, to advance telematics research. This paper describes work resulting from a research initiative to investigate the use of dialog systems in automotive environments, which includes in-vehicle driver as well as automotive manufacturing environments. We present recent results of an effort to develop an in-vehicle dialog prototype, preliminary to building a dialog system to assist in workforce training in automotive manufacturing. The overall system design is presented with focus on development of the semantic information needed by the natural language and dialog management modules. We describe data collection and analysis through which the information was derived. Through this process we reduced the parsing error rate by over 20% and system understanding errors to 3%.
1. Introduction

Signal processing tools extract feature vectors from speech data, and thus play a critical role in the development and use of speech recognition systems. Also referred to as front end tools, many signal processing toolkits are currently available. Matlab is an example of one of the more popular commercial products [x]. Such toolkits provide powerful computation and analysis capabilities, and sophisticated graphical interfaces. Nonetheless, they also contain serious deficiencies that limit their usefulness in a research environment. The first deficiency concerns the need for programming when researchers wish to evaluate new ideas using existing algorithms. Second, adding new algorithms to such toolkits requires modifying the base code of the existing system, a potentially time-consuming and costly undertaking, that can significantly impede many research efforts. Third, special problems for speech recognition front ends exist. In particular, synchronization along the data flow graph is required if two or more paths exist using different numbers of algorithms to reach the same point. Of even greater importance and difficulty, data preparation for algorithms that require multiple frames of data, such as window and calculus, can be problematic. To address these issues and to provide users a powerful signal processing tool that requires no programming, we have developed a modular, flexible environment of signal processing tools. The key differentiating characteristics of our system include[1]:

Competitive technology with maximum flexibility;

Unrestricted access via the Internet;

Well-documented APIs to facilitate new programming;

An object-oriented software design.

The latter point concerning the software design philosophy was crucial in providing a truly modular, flexible user environment. This paper first presents our software design rationale and approach for achieving maximum system modularity and usability. It then describes the details of an environment of GUI-based tools we developed following this rationale. This environment enables users to implement front ends by drawing block diagrams of signal processing functions without any programming. The tools comprise core components of our public domain speech recognition system[x]. Finally, we present results of experiments conducted to test and verify the correctness of the tools.

2. GUI-Based Signal Processing Tools

Research in the area of speech recognition requires the development of large applications in a relatively short period of time. Unfortunately, however, as noted, many ideas remain unexplored due to the effort such development requires, including rewriting common functions or debugging low-level issues such as file I/O. To address these needs, we designed a large, hierarchical software environment to support advanced research in all areas of speech recognition, including signal processing. This environment contains the ISIP Foundation Classes (IFCs) which provide features ranging from complex data structures to an abstract file I/O interface. IFC’s are implemented as a set of C++ classes, organized as libraries in a hierarchical structure. They are targeted for the needs of rapid prototyping and lightweight programming without sacrificing efficiency. Some key features include:

Unicode support for multilingual applications;

Math classes that provide basic linear algebra and efficient matrix manipulations;

Memory management and tracking;

System and I/O libraries that abstract users from details of the operating system

The IFCs environment provides support for users to develop new approaches without rewriting common functions. The software interfaces are carefully designed to be generic and extensible. This design approach facilitates overall system development that is modular and flexible, yielding a high level of usability.

We developed our signal processing toolkit to stringently adhere to the IFC design philosophy and framework. At the outset, it was clear that the tools must not only allow a wide selection of algorithms, but also the ability to vary every parameter of each algorithm easily and finally, provide users an efficient environment for evaluating new research ideas. Thus, the design requirements for these tools included:

a library of standard algorithms to provide basic digital signal processing (DSP) functions;

an ability to easily add new algorithm classes and functions;

a block diagram approach to describing algorithms to realize rapid prototyping without programming.

Fulfilling the first requirement enabled users to directly realize a single algorithm such as windows, filters, or energy, with simple programming by building an algorithm object, and calling its functions. Meeting the second requirement allowed users to enhance system capabilities according to new requirements and to extend to new DSP areas.

To meet the first two requirements, we designed and implemented an algorithm library and a signal processing library. The object-oriented design of the algorithm library, using inheritance with an abstract base class, greatly enhanced the extensibility of the software. To create new classes, users simply supply definitions of the public interface contract methods for the AlgorithmBase class. Further details of the interface contract are given in Section 2.1.

To meet the third requirement, we developed a signal processing control tool and a signal processing configuration tool. The procedure by which users employ the tools and libraries can be described as follows: First, the signal processing configuration tool is used to graphically specify the sequence of algorithms and their configuration using a block diagram, saving this to a file containing a front end “recipe”, hence a “recipe” file. Second, the signal processing control tool accepts the speech data file and the recipe files produced in the first step as input. It then parses the recipe file using functions provided by the signal processing library to obtain the necessary information for each algorithm. Finally, it applies the corresponding algorithm functions to process the input speech data by calling the correct method in the algorithm library. Because the algorithm library is fundamental to all other libraries and tools, it is described first in the following section. Descriptions of the signal processing configuration and control tools and signal processing library are then presented.

2.1. Algorithm Library

The algorithm library contains a collection of signal processing and support algorithms implemented as a hierarchy of C++ classes. The implementation of this hierarchy using an abstract base class, AlgorithmBase, and virtual functions or methods that comprise the interface contract, is perhaps the single most important feature, since it makes the library easily extensible. All algorithm classes are derived from this base class. However, since it is an abstract class, no objects are ever directly instantiated from it. Instead, it defines the interface contract, specifying virtual functions that all Algorithm classes must provide, and centralizes useful protected data common to all algorithms, such as sample frequency and frame duration.

To add a new algorithm class to the library, the virtual functions in the interface contract must be defined: The apply method provides one example of a virtual function in the interface contract….describehow this might be defined for a new Algorithm class….

The algorithms currently included in our library can be categorized as basic DSP algorithms and support algorithms The basic DSP library includes commonly used algorithms, such as windows, filter, and energy. Support algorithms allow high level manipulation of data flow through block diagrams. Together, they provide a unique and powerful set of signal processing capabilities, some of which include: multi-pass processing of a signal; automatic handling of arbitrary amounts of prior and future data when a recipe is created; processing of a signal, saving a constant derived from that signal to a file, and reloading the constant….and what other fabulous features?

As stated, the basic DSP algorithm library includes the most commonly used algorithms, such as windows, filter, filter bank and energy. These algorithms are designed to provide general-purpose functionality. Users can employ these fully tested algorithms in their own software or as a learning tool in a basic DSP course. The algorithms implemented to date in this category include: energy, filter, filterBank, window, cepstrum, fourier transform, spectrum, correlation, covariance, prediction, reflection, log are ratio, and calculus. These are the most widely used algorithms, providing basic modules for building complex front ends such as mel cepstra, perceptual linear prediction, filterbank amplitudes and delta features[x].

The support algorithms provide primitive debugging tools as well as the ability to manipulate feature streams. Combined with the basic DSP algorithms, they yield a powerful set of signal processing capabilities. Some important algorithms in this category which have been implemented include:

Constant: this provides a mechanism for applying global constants, such as the mean value of a signal, to a signal. This class is used extensively to implement algorithms requiring multi-pass processing. Examples of such algorithms?

Math: this provides an ability to form weighted linear combinations of functions of feature vectors. This class is designed to provide maximum flexibility by supporting a mini-scripting language for functional analysis. It gives the front end a Matlab-like capability. (This was in Gao’s paper. Don’t know if you want to make such a comparison or not.)

….. what other important classes to highlight?

Think it would be good to show one example of how a couple or more of these classes would be used together. Perhaps? Perhaps not.

Each algorithm described above provides multiple implementation options. For example, the window class can be implemented as rectangular, Blackman, Bartlett, dolph_chebyshev, gaussian, hamming, hanning, Kaiser, lifter, or custom window options.

To summarize, the algorithm library serves as the foundation for all other signal processing tools and libraries. Its object-oriented design and implementation make it extensible and flexible. The signal processing configuration tool allows users easy access to these algorithms and is described in the following section.

2.2. Signal Processing Configuration Tool

We developed a Java GUI tool, called ?? transform builder ?? , shown in Figure 1, to provide users a block diagram approach to designing acoustic front ends. We chose the Java language to allow the tool to run across a wide range of platforms, including Microsoft Windows, and to give the tool an industry-standard look and feel.

The signal processing configuration tool was designed to allow users to draw block diagrams, connect each block using directed arcs, configure each block in the diagram, and save that configuration or “recipe” into a file called a recipe file. Each block represents one algorithm in which the user can specify how to process data; each arc represents a data flow from one algorithm to another. The format of the recipe file is recognized and used by the signal processing control tool, described below in Section 2.3.

(seems like here we ought to have an example description, can be simple, but…something)

To increase the extensibility of the tool, all algorithms are presented in the interface through a components menu , shown in Figure 1, using a resource file. All algorithms appearing in this menu are read from the resource file. Adding a new algorithm requires simply including its description into the resource file according to its format. No modifications to the source code of the signal processing control tool itself are required.

…….

The NLU module uses a publicly available semantic case frame parser [8]. It employs a semantic grammar consisting of case frames with named slots. A context free grammar (CFG) specifies the word sequences for each slot. The grammars are compiled into Recursive Transition Networks, against which the recognizer output is matched to fill the slots. A semantic parse tree is generated for each slot with the slot name as root. A simple example frame for a request for driving information is shown below

FRAME: Drive

 [route]

 [distance]

The first slot in this frame, [route], allows asking for directions along a specific route, while the second slot, [distance], allows asking for the distance from one location to another. A subset of CFG rules for the route slot are shown below:

[route]

 (*IWANT *[go_verb] [arriveloc])

IWANT

 (I want *to) (I would *like *to) (I will) (I need *to)

 [go_verb]

 (go) (drive *to) (get) (reach)

[arriveloc]

 [*to [placename] [cityname]]

This type of grammar is advantageous for dialog systems because it can accept the ungrammatical inputs likely to occur in spontaneous speech. For example, the rules shown above would accept the input, “I would like…I.. need to go to the Post Office on campus.” This flexibility reduces the need for users to adhere to strict syntactic correctness in their requests.

As previously discussed, grammar and language model development are highly domain specific, making these costly efforts for dialog system development. The semantic grammar supplied with the parser toolkit was developed for a general purpose travel domain; thus, development of frames and slots specific to our application was required. Our current semantic grammar consists of approximately 500 rules and over 2000 words. It was developed, along with the language model, from a corpus of 276 sentences spontaneously entered by users over a series of three pilot tests, described more fully in Section 3.
Once parsing is complete, the NLU module sends a list of possible sentence parses via the hub to the Dialog Manager to determine meaning and resolve the query. The semantic frames defined for the parser are integral to this resolution. Semantic frame development as well as the Dialog Manager structure are described in the following section.

2.3. Dialog Manager

The Dialog Manager (DM) determines the nature of the interaction between the user and system. First, it initiates the dialog, prompting the user for an initial query. The user speaks a request that is received by the recognition module, and parsed by the NLU module. The NLU module then passes a list of possible sentence parses to the DM, which selects the best possible parse, based on the scoring of the slots, and maps this to its own internal set of frames. It then merges this result with a set of context frames it maintains and determines what action to take in response. If there is no missing or conflicting information, the DM forms a database query, obtains the result from the database, and passes it to the NL module for output. Otherwise, it asks the user to clarify missing or conflicting data and attempts again to resolve the request.

Our DM was derived from the toolkit provided in [8]. It follows a declarative design which means that, similar to the NLU module, the bulk of the development effort lies in the construction of domain-specific frames, forms, and grammars. Modifications to the DM code base consisted primarily of those needed to process domain-specific information. This approach offers many advantages, in particular, a reduction in the complexity of the DM code base. Nonetheless, design of the semantic frames can critically affect system performance. Using the fewest frames and slots provides efficiency but does not yield a system robust to unexpected input. Conversely, using too many frames and slots can degenerate to keyword spotting. Finding the proper balance between these two extremes requires careful experimentation and analysis.

Our application provides both general-purpose information to queries such as “Is there a hiking trail here?” as well as information specific to drivers, e.g., “Can I drive to the coliseum from the drill field?” We began with a single Drive frame with multiple slots to represent all types of queries a user might ask about driving in a particular area and a single Info frame with multiple slots for general information. The relative simplicity of the driving task warranted the initial choice of a single frame with carefully selected slots, subslots and associated CFG’s. Analysis of the pilot corpus, however, indicated the single Drive frame did not provide sufficient robustness to unexpected input. We replaced the single frame with 9 separate frames, each related to different types of queries a driver might pose. Example frames and the associated queries the frames can handle are shown in Table 1.

To summarize, the DM controls the interaction of the user with the system, determining what data the user requires, obtaining the data, and finally presenting it to the user. Once the DM has determined the data needed by the user, it must obtain this data via the hub from the application back end.

2.4. Application Back End
Our application back end houses a database storing information about the MSU/Starkville area. Initially we used an Internet map routing program to obtain the data and store it in a local relational database. We used this as an interim tool only, however, in order to focus more effort on developing other system modules. Though expedient, its coverage of the campus and local area were not sufficient. We have since incorporated a Geographic Information System (GIS) module, which stores data captured from a global positioning system (GPS). The GIS provides the route information, which is then stored in the local database. We are incorporating real-time GPS data capture in the next release of the system.

	Drive_Direction:
“How can I get from Lee Boulevard to Kroger?”

Drive_Address:
“Where is the bakery located?”

Drive_Distance:
“How far is China Garden from here?”

Drive_Turn:
“I’m on the corner of Nash and Route 82. What’s the next turn to get to campus?”

Drive_Quality:
“Find me the most scenic route from LJ’s to Scott Field.”

Drive_Intersect:
“Does Lynn Lane intersect Academy Road?”

Drive_Special:
“Can I bypass Highway 12 to get to Bryan Field?”

Table 1. Example frames and the associated queries.
3. Pilot Experiments

To obtain the domain-specific data needed to develop the semantic grammar and language model, we conducted a series of three pilot experiments, during which users were asked to spontaneously enter requests for information about the university campus and surrounding town. Each of the three pilot experiments consisted of two phases, 1) initial data gathering and system testing, followed by 2) retesting the system on the initial data after enhancements were made to the grammar and language model. Initial efforts focused on reducing the rate of out of vocabulary (OOV) utterances and parsing errors for the NLP module. The initial lexicon contained over 2000 words. The initial semantic grammar contained a Drive frame with two slots, each expandable to multiple subslots as shown:

FRAME Drive:

 [Depart_Loc]

 [Arrive_Loc]

each of which can expand to
[City_name],
[State],[
Place_Type],
[Place_Name],
[Address]. Each of these subslots can be further expanded, for example
,

[Place_Name] can expand to [(
Restaurant_Name)], [(
Hotel_Name)],
 [(Campus_Name)], [(
Building_Name)].
After each test, new domain-specific words occurring in the pilot data were added to the lexicon. In addition, new slots and CFG rules were added to the Drive frame to increase the robustness of the parser. For example, to handle a request such as “What’s the best way to get to the courthouse?” a new slot and associated CFG’s were added. The slot and an excerpted subset of the rules added include:

[query_best]

 (WHATS * THE * SPEC_WAY WAY)

 SPEC_WAY

(best)
(shortest)
(better)
(nearest)
(closest)
(fastest)

 WHATS

(what’s)
(what is)
(where *)
(which *is)
(which *are)

	Vers.
	1.0
	2.0
	3.0

	Test
	Pre
	Post
	Pre
	Post
	Pre
	Post

	OOV
	25%
	0%
	36%
	0%
	4%
	0%

	Parser
	80%
	3%
	60%
	5%
	46%
	11%

Table 2: A summary of the results from three pilot studies to refine the NLU system.
The results for each of the three pilot experiments are given in Table 2:

	Test No.
	NLP Parser

Error Rate
	Dialog Manager
Error Rate

	1
	43%
	49%

	2
	6%
	3%

Table 3. The results from two pilot studies on the overall system performance.
After completing the pilot experiments, two overall system tests on the entire corpus were conducted for refinement. Results of these tests are given in Table 3:

 Prior to the first test, the single Drive frame was implemented. As described in Section 2.5, analyses of the first overall test results indicated the number and type of semantic frames should be increased to reduce the parsing error rate. Even with multiple slots, subslots and carefully crafted associated CFG rules, the single Drive frame did not provide sufficient robustness. The addition of the new semantic frames reduced the parsing error rate from 43% in the first overall test to 6% in the second overall test as shown in Table 3.
We also measured DM performance in the overall tests. Changes to the DM code base to include the new semantic frames reduced the system understanding errors from 49% to 3%. The query, “Is Dean’s still on University Drive?” provides an example of the type of error the DM still could not resolve even after including the new frames. The correct answer, “Dean’s is located at 134 E. Amite St.” may not be given. “Dean’s” is a proper noun represented in the grammar as both a place of business in town and the location of the academic dean for a college. The DM resolves such ambiguities by examining context of place, i.e., town or campus. If the previous context is campus, “Dean’s” is interpreted as an academic dean rather than a place of business. If no previous context exists, any address given in the query is used to establish context. In this case, “University Drive” resolves to campus context. Such issues must be addressed and are problematic since they affect more basic issues of system usability, e.g., the level of clarification required by the user as well as the level of user initiative.
	
	

	

	
	
	

	
	
	

4. Conclusions and Future Work

We undertook the in-vehicle driver assistance project to explore the challenges in dialog system development and build a capability for further research in the workforce training and other related domains. For the ASR module of our final prototype, we anticipate a real-time system with a vocabulary of approximately 5000 words, perplexity of 50, and WER of 10%. For the NLU module, we anticipate a semantic grammar of approximately 15 frames and a parsing error rate of less than 10%. One interesting finding of our work concerned verification of the cost incurred by the domain-specific development required for dialog systems. An area of future research will explore methods for automating this process using statistical techniques. Advances in this area could greatly reduce development time. We intend to investigate this as we transition to the workforce training domain.
We are also implementing several enhancements to the in-vehicle system. As noted, we have incorporated a GIS database to contain the routing information and are developing the capability for real-time GPS data capture. To enhance the recognition module, we are collecting further data to refine the acoustic models and the language model. We plan to analyze this data to improve the robustness of the NLP and the DM modules as well. Our current prototype provides information in NL text output only. Our final prototype will integrate NL generation with speech output. Finally, we intend to make the current system available to the local community via telephone access, which would enable drivers to obtain assistance in navigating the local area through cellular telephones.

5. References
1. Loomis et al., “Personal Guidance System for the Visually Impaired,” ASSETS ’94, ACM Conference on Assistive Technologies, Los Angeles, CA, USA, November 1994.

2. J.R. Davis and C. Schmandt, “The Back Seat Driver: Real Time Spoken Driving Instructions,” First Vehicle Navigation and Information Systems Conference, Toronto, Ontario, Canada, September 1989.

3. D. Buhler, W. Minker, J. Haubler, S. Kruger, “Flexible Multimodal Human-Machine Interaction in Mobile Environments,” Proceedings ICSLP, Denver, CO, USA, September 2002.
4. B. Pellom, W. Ward, J. Hansen, K. Hacioglu, and J. Zhang, X. Yu, and S. Pradhan, “University of Colorado Dialog Systems for Travel and Navigation,” Proceedings of the 2001 Human Language Technology Conference (HLT-2001), San Diego, CA, USA, March 2001.
5. P. Geutner, M. Denecke, U. Meier, M. Westphal, and A. Waibel, “Conversational Speech Systems for On-Board Car Navigation and Assistance,” Proceedings ICSLP, Sydney, Australia, December 1998.

6.
7. S. Young, “Talking to Machines (Statistically Speaking)” Proceedings ICSLP, Denver, CO, USA, pp. 9-16, September 2002.
8. “DARPA Communicator,” http://fofoca.mitre.org/, The MITRE Corporation, 2003.
9. B. Pellom, W. Ward, S. Pradhan, “The CU Communicator: An Architecture for Dialogue Systems,” Proceedings ICSLP, Beijing China, November 2000.

10. J. Picone, et al., “A Public Domain C++ Speech Recognition Toolkit,”, ISIP, Mississippi State University, Mississippi State, MS, USA, March 2003 (http://www .isip.msstate.edu/projects/speech).

11. SRILM – The SRI Language Modeling Toolkit: http://www.speech.sri.com/projects/srilm.

This page needs to be here or Word does not number the last reference (
12.

13.

2

