Signal Processing Tools for Speech Recognition

Julie A. Baca, Hualin Gao
Joseph Picone

Center for Advanced Vehicular Systems (CAVS)
Institute for Signal and Information Processing (ISIP)

Mississippi State University
Mississippi State University

baca@cs.msstate.edu, gao@isip.misstate.edu
picone@isip.msstate.edu

Abstract

The Center for Advanced Vehicular Systems (CAVS), located at Mississippi State University (MSU), is collaborating with regional automotive manufacturers such as Nissan, to advance telematics research. This paper describes work resulting from a research initiative to investigate the use of dialog systems in automotive environments, which includes in-vehicle driver as well as automotive manufacturing environments. We present recent results of an effort to develop an in-vehicle dialog prototype, preliminary to building a dialog system to assist in workforce training in automotive manufacturing. The overall system design is presented with focus on development of the semantic information needed by the natural language and dialog management modules. We describe data collection and analysis through which the information was derived. Through this process we reduced the parsing error rate by over 20% and system understanding errors to 3%.
1. Introduction

Signal processing tools extract feature vectors from speech data, and thus play a critical role in the development and use of speech recognition systems. Also referred to as front end tools, many signal processing toolkits are currently available. Matlab is an example of one of the more popular commercial products [x]. Such toolkits provide powerful computation and analysis capabilities, and sophisticated graphical interfaces. Nonetheless, they also contain serious deficiencies that limit their usefulness in a research environment. The first deficiency concerns the need for programming when researchers wish to evaluate new ideas using existing algorithms. Second, adding new algorithms to such toolkits requires modifying the base code of the existing system, a potentially time-consuming and costly undertaking, that can significantly impede many research efforts. Third, special problems for speech recognition front ends exist. In particular, synchronization along the data flow graph is required if two or more paths exist using different numbers of algorithms to reach the same point. Of even greater importance and difficulty, data preparation for algorithms that require multiple frames of data, such as window and calculus, can be problematic. To address these issues and to provide users a powerful signal processing tool that requires no programming, we have developed a modular, flexible environment of signal processing tools. The key differentiating characteristics of our system include[1]:

Competitive technology with maximum flexibility;

Unrestricted access via the Internet;

Well-documented APIs to facilitate new programming;

An object-oriented software design.

The latter point concerning the software design philosophy was crucial in providing a truly modular, flexible user environment. This paper first presents our software design rationale and approach for achieving maximum system modularity and usability. It then describes the details of an environment of GUI-based tools we developed following this rationale. This environment enables users to implement front ends by drawing block diagrams of signal processing functions without any programming. The tools comprise core components of our public domain speech recognition system[x]. Finally, we present results of experiments conducted to test and verify the correctness of the tools.

2. GUI-Based Signal Processing Tools

Research in the area of speech recognition requires the development of large applications in a relatively short period of time. Unfortunately, however, as noted, many ideas remain unexplored due to the effort such development requires, including rewriting common functions or debugging low-level issues such as file I/O. To address these needs, we designed a large, hierarchical software environment to support advanced research in all areas of speech recognition, including signal processing. This environment contains the ISIP Foundation Classes (IFCs) which provide features ranging from complex data structures to an abstract file I/O interface. IFC’s are implemented as a set of C++ classes, organized as libraries in a hierarchical structure. They are targeted for the needs of rapid prototyping and lightweight programming without sacrificing efficiency. Some key features include:

Unicode support for multilingual applications;

Math classes that provide basic linear algebra and efficient matrix manipulations;

Memory management and tracking;

System and I/O libraries that abstract users from details of the operating system

The IFCs environment provides support for users to develop new approaches without rewriting common functions. The software interfaces are carefully designed to be generic and extensible. This design approach facilitates overall system development that is modular and flexible, yielding a high level of usability.

We developed our signal processing toolkit to stringently adhere to the IFC design philosophy and framework. At the outset, it was clear that the tools must not only allow a wide selection of algorithms, but also the ability to vary every parameter of each algorithm easily and finally, provide users an efficient environment for evaluating new research ideas. Thus, the design requirements for these tools included:

a library of standard algorithms to provide basic digital signal processing (DSP) functions;

an ability to easily add new algorithm classes and functions;

a block diagram approach to describing algorithms to realize rapid prototyping without programming.

Fulfilling the first requirement enabled users to directly realize a single algorithm such as windows, filters, or energy, with simple programming by building an algorithm object, and calling its functions. Meeting the second requirement allowed users to enhance system capabilities according to new requirements and to extend to new DSP areas.

To meet the first two requirements, we designed and implemented an algorithm library and a signal processing library. The object-oriented design of the algorithm library, using inheritance with an abstract base class, greatly enhanced the extensibility of the software. To create new classes, users simply supply definitions of the public interface contract methods for the AlgorithmBase class. Further details of the interface contract are given in Section 2.1.

To meet the third requirement, we developed a signal processing control tool and a signal processing configuration tool. The procedure by which users employ the tools and libraries can be described as follows: First, the signal processing configuration tool is used to graphically specify the sequence of algorithms and their configuration using a block diagram, saving this to a file containing a front end “recipe”, hence a “recipe” file. Second, the signal processing control tool accepts the speech data file and the recipe files produced in the first step as input. It then parses the recipe file using functions provided by the signal processing library to obtain the necessary information for each algorithm. Finally, it applies the corresponding algorithm functions to process the input speech data by calling the correct method in the algorithm library. Because the algorithm library is fundamental to all other libraries and tools, it is described first in the following section. Descriptions of the signal processing configuration and control tools and signal processing library are then presented.

2.1. Algorithm Library

The algorithm library contains a collection of signal processing and support algorithms implemented as a hierarchy of C++ classes. The implementation of this hierarchy using an abstract base class, AlgorithmBase, and virtual functions or methods that comprise the interface contract, is perhaps the single most important feature, since it makes the library easily extensible. All algorithm classes are derived from this base class. However, since it is an abstract class, no objects are ever directly instantiated from it. Instead, it defines the interface contract, specifying virtual functions that all Algorithm classes must provide, and centralizes useful protected data common to all algorithms, such as sample frequency and frame duration.

To add a new algorithm class to the library, the virtual functions in the interface contract must be defined: The apply method provides one example of a virtual function in the interface contract….describe how this might be defined for a new Algorithm class?….

The algorithms currently included in our library can be categorized as basic DSP algorithms and support algorithms The basic DSP library includes commonly used algorithms, such as windows, filter, and energy. Support algorithms allow high level manipulation of data flow through block diagrams. Together, they provide a unique and powerful set of signal processing capabilities, some of which include: multi-pass processing of a signal; automatic handling of arbitrary amounts of prior and future data when a recipe is created; processing of a signal, saving a constant derived from that signal to a file, and reloading the constant….and what other fabulous features?

As stated, the basic DSP algorithm library includes the most commonly used algorithms, such as windows, filter, filter bank and energy. These algorithms are designed to provide general-purpose functionality. Users can employ these fully tested algorithms in their own software or as a learning tool in a basic DSP course. The algorithms implemented to date in this category include: energy, filter, filterBank, window, cepstrum, fourier transform, spectrum, correlation, covariance, prediction, reflection, log are ratio, and calculus. These are the most widely used algorithms, providing basic modules for building complex front ends such as mel cepstra, perceptual linear prediction, filterbank amplitudes and delta features[x].

The support algorithms provide primitive debugging tools as well as the ability to manipulate feature streams. Combined with the basic DSP algorithms, they yield a powerful set of signal processing capabilities. Some important algorithms in this category which have been implemented include:

Constant: this provides a mechanism for applying global constants, such as the mean value of a signal, to a signal. This class is used extensively to implement algorithms requiring multi-pass processing. Examples of such algorithms?

Math: this provides an ability to form weighted linear combinations of functions of feature vectors. This class is designed to provide maximum flexibility by supporting a mini-scripting language for functional analysis. It gives the front end a Matlab-like capability. (This was in Gao’s paper. Don’t know if you want to make such a comparison or not.)

….. what other important classes to highlight?

Think it would be good to show one example of how a couple or more of these classes would be used together. Perhaps? Perhaps not.

Each algorithm described above provides multiple implementation options. For example, the window class can be implemented as rectangular, Blackman, Bartlett, dolph_chebyshev, gaussian, hamming, hanning, Kaiser, lifter, or custom window options.

To summarize, the algorithm library serves as the foundation for all other signal processing tools and libraries. Its object-oriented design and implementation make it extensible and flexible. The signal processing configuration tool allows users easy access to these algorithms and is described in the following section.

2.2. [image: image1.jpg]File Edit Components Help

Signal Processing Configuration Tool

We developed a Java GUI tool, shown in Figure 1, to provide users a block diagram approach to designing acoustic front ends. We chose the Java language to allow the tool to run across a wide range of platforms, including Microsoft Windows, and to give the tool an industry-standard look and feel.

The signal processing configuration tool allows users to draw block diagrams comprised of graph components, as shown in Figure 1. Each component represents one algorithm for which the user can specify how to process data; each arc represents a data flow from one algorithm to another. To build a block diagram, the user selects the desired algorithm from the component menu, connects each component using directed arcs, configures each component in the diagram, and saves the configuration or “recipe” into a file. The signal processing control tool, described in Section 2.3, uses this file to complete the signal transformation process.

The example block diagram shown in Figure 1 illustrates many unique capabilities of the configuration tool. This example accepts one signal input and applies two sequences of algorithms or data flows in parallel to process the signal. The leftmost sequence (data flow) computes a vector of linear prediction coefficients from a window of data extracted from the signal. The rightmost sequence (data flow) applies a filter to the signal and computes energy from a differing window of data, producing a single energy value. The results of each data flow are combined via the connection (Conn) component in the diagram to produce a single vector. The statistics (Stat) component then computes an average from this vector, and finally the constant (Cons) component stores this constant to a file. This example illustrates several important features of the tool. First, all synchronization and buffering of data between components within a single data flow and across data flows is automatically performed by this tool in combination with the signal processing control tool, described in Section 2.3. The user need only draw the block diagram to indicate how the signal should be processed, without concern for data synchronization or buffering. In addition, the example illustrates the support provided for multi-pass processing. The constant saved to a file can be easily reloaded as input to the same data flow diagram or differing diagrams. All of these capabilities empower researchers to explore ideas freely without the heavy programming burden that might otherwise be incurred.

Finally, to increase the extensibility of the tool, algorithms are presented in the interface through the components menu which is populated from a resource file. All algorithms appearing in this menu are read from the resource file. Adding a new algorithm requires simply including a description into the resource file according to its format. No modifications to the source code of the signal processing control tool itself are required.

2.3 Signal Processing Library and Control Tool

The signal processing library is a collection of specially designed modules, implemented as C++ classes, which serve as an interface between the block diagrams, created by the GUI configuration tool, and the computation algorithms, described in Section 2.1. It should be noted that the work of the signal processing library is hidden from the user by default. Its functions include: parsing the file containing the recipe created by the user with the configuration tool; synchronizing different paths along the block flow diagram contained in this file; preparing input/output data buffers for each algorithm, particularly for those requiring multiple frames of data, such as windows or calculus; scheduling the sequences of required signal processing operations; processing data through the flow defined by the recipe; and finally, managing conversational data. ??

An important attribute of the signal processing control tool concerns its compatibility with other components of our software. Specifically, it uses the same code base as the recognizer. This further enhances the usability of the toolkit, enabling researchers to more easily achieve consistency in experimental results by using the same data in recognition as that used in feature extraction. Also, it facilitates consistency of performance in live system demonstrations, again by supporting use of the same data from feature extraction in recognition.
3. Experimental Results

To obtain the domain-specific data needed to develop the semantic grammar and language model, we conducted a series of three pilot experiments, during which users were asked to spontaneously enter requests for information about the university campus and surrounding town. Each of the three pilot experiments consisted of two phases, 1) initial data gathering and system testing, followed by 2) retesting the system on the initial data after enhancements were made to the grammar and language model. Initial efforts focused on reducing the rate of out of vocabulary (OOV) utterances and parsing errors for the NLP module. The initial lexicon contained over 2000 words. The initial semantic grammar contained a Drive frame with two slots, each expandable to multiple subslots as shown:

tiative.
	
	

	

	
	
	

	
	
	

4. Conclusions and Future Work

We undertook the in-vehicle driver assistance project to explore the challenges in dialog system development and build a capability for further research in the workforce training and other related domains. For the ASR module of our final prototype, we anticipate a real-time system with a vocabulary of approximately 5000 words, perplexity of 50, and WER of 10%. For the NLU module, we anticipate a semantic grammar of approximately 15 frames and a parsing error rate of less than 10%. One interesting finding of our work concerned verification of the cost incurred by the domain-specific development required for dialog systems. An area of future research will explore methods for automating this process using statistical techniques. Advances in this area could greatly reduce development time. We intend to investigate this as we transition to the workforce training domain.
We are also implementing several enhancements to the in-vehicle system. As noted, we have incorporated a GIS database to contain the routing information and are developing the capability for real-time GPS data capture. To enhance the recognition module, we are collecting further data to refine the acoustic models and the language model. We plan to analyze this data to improve the robustness of the NLP and the DM modules as well. Our current prototype provides information in NL text output only. Our final prototype will integrate NL generation with speech output. Finally, we intend to make the current system available to the local community via telephone access, which would enable drivers to obtain assistance in navigating the local area through cellular telephones.

5. References
1. Loomis et al., “Personal Guidance System for the Visually Impaired,” ASSETS ’94, ACM Conference on Assistive Technologies, Los Angeles, CA, USA, November 1994.

2. J.R. Davis and C. Schmandt, “The Back Seat Driver: Real Time Spoken Driving Instructions,” First Vehicle Navigation and Information Systems Conference, Toronto, Ontario, Canada, September 1989.

3. D. Buhler, W. Minker, J. Haubler, S. Kruger, “Flexible Multimodal Human-Machine Interaction in Mobile Environments,” Proceedings ICSLP, Denver, CO, USA, September 2002.
4. B. Pellom, W. Ward, J. Hansen, K. Hacioglu, and J. Zhang, X. Yu, and S. Pradhan, “University of Colorado Dialog Systems for Travel and Navigation,” Proceedings of the 2001 Human Language Technology Conference (HLT-2001), San Diego, CA, USA, March 2001.
5. P. Geutner, M. Denecke, U. Meier, M. Westphal, and A. Waibel, “Conversational Speech Systems for On-Board Car Navigation and Assistance,” Proceedings ICSLP, Sydney, Australia, December 1998.

6.
7. S. Young, “Talking to Machines (Statistically Speaking)” Proceedings ICSLP, Denver, CO, USA, pp. 9-16, September 2002.
8. “DARPA Communicator,” http://fofoca.mitre.org/, The MITRE Corporation, 2003.
9. B. Pellom, W. Ward, S. Pradhan, “The CU Communicator: An Architecture for Dialogue Systems,” Proceedings ICSLP, Beijing China, November 2000.

10. J. Picone, et al., “A Public Domain C++ Speech Recognition Toolkit,”, ISIP, Mississippi State University, Mississippi State, MS, USA, March 2003 (http://www .isip.msstate.edu/projects/speech).

11. SRILM – The SRI Language Modeling Toolkit: http://www.speech.sri.com/projects/srilm.

This page needs to be here or Word does not number the last reference (
12.

13.

�

2

