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Abstract 
Nonparametric Bayesian models have become increasingly 
popular in speech recognition for their ability to discover 
data’s underlying structure in an iterative manner. Dirichlet 
process mixtures (DPMs) are a widely used nonparametric 
method that do not require a priori assumptions about the 
structure of the data. DPMs, however, require an infinite 
number of parameters so inference algorithms are needed to 
make posterior calculations tractable. The focus of this work is 
an evaluation of three variational inference algorithms for 
acoustic modeling: Accelerated Variational Dirichlet Process 
Mixtures (AVDPM), Collapsed Variational Stick Breaking 
(CVSB), and Collapsed Dirichlet Priors (CDP). 

A phoneme classification task is chosen to more clearly 
assess the viability of these algorithms for acoustic modeling. 
Evaluations were conducted on the CALLHOME English and 
Mandarin corpora, consisting of two languages that, from a 
human perspective, are phonologically very different. It is 
shown in this work that these inference algorithms yield error 
rates comparable to a baseline Gaussian mixture model 
(GMM) but with a factor of 20 fewer mixture components. 
AVDPM is shown to be the most attractive choice because it 
delivers the most compact models and is computationally 
efficient, enabling its application to big data problems. 
Index Terms: nonparametric Bayesian methods, variational 
inference, CALLHOME, phoneme recognition 

1.  Introduction 
Nonparametric Bayesian models have become increasingly 
popular in speech recognition due to their ability to discover 
data’s underlying structure in an iterative manner [1]. Dirichlet 
process mixtures (DPMs) are a widely used nonparametric 
method that do not require a priori assumptions about the 
structure of data, such as the number of mixture components, 
and can learn this information directly from the data [1]. This 
is ideal for acoustic modeling in speech recognition where the 
number of mixture components is a parameter commonly 
found by tuning a system using a subset of the data. Typically, 
the number of components is assumed to be constant since it 
would be tedious to tune models for each phoneme. DPMs, 
however, are able to automatically determine an optimal 
number of mixtures for each individual model. 

There are many depictions of Dirichlet processes but the 
algorithms in this work are all premised on the stick breaking 
approach shown in Figure 1. In this representation a stick of 
unit length is broken repeatedly into smaller pieces. Each 
break represents a new mixture component weight where the 
fraction of the remaining stick is given by vi and the absolute 
length of each piece (i.e. the weight of the mixture component) 
is given by ci.  

Aside from automatic tuning of the number of mixtures, it 
is equally important to ensure that these models generalize 
well across different data. Our long-term interest in 
nonparametric Bayesian approaches, and advanced statistical 
models in general, is to develop models that are robust to 
significant variations in the acoustic channel. Low complexity 
models that have good generalization are a step in this 
direction. In this work, the performance of three Bayesian 
variational inference algorithms – Accelerated Variational 
Dirichlet Process Mixtures (AVDPM), Collapsed Variational 
Stick Breaking (CVSB), and Collapsed Dirichlet Priors (CDP) 
[2][3] – are assessed on both the CALLHOME English 
(CH-E) and the CALLHOME Mandarin (CH-M) corpora. 

1.1. Variational Inference Algorithms 

Nonparametric methods such as DPMs, although extremely 
useful for finding the underlying structure of data, often come 
at a cost of computational complexity. The term 
‘nonparametric’ is something of a misnomer since DPMs 
require a potentially infinite number of parameters. This 
makes manipulating such distributions intractable, so 
inference algorithms are used to approximate these models. 
Markov chain Monte Carlo (MCMC) methods, such as Gibbs 
sampling, are extremely popular for their mathematical 
simplicity [4]-[6]. These methods approximate complex 
posteriors by sampling latent variables from a Markov chain 
that represents the distribution of interest [7]. Unfortunately, 
converging to optimal posterior approximations is often slow 
and these methods can become intractable for big data 
problems such as speech recognition [5][7].  

Variational inference algorithms approximate a posterior, 
p(y|x), with a simpler distribution q(y) by making assumptions 
about the dependencies of the distribution’s latent variables. 
The task of approximating a complex distribution is 
transformed into an optimization problem where an optimal q 
is found from a set of variational distributions Q={q1, q2,…, 
qm} such that an objective function, i.e. Kullback-Leibler 
divergence, is minimized. The introduction of these efficient 
inference algorithms [2][3] recently has made applications 
such as speech recognition computationally feasible. 

   
Figure 1: A diagram of the stick breaking representation of a 
Dirichlet process is shown. The absolute length of each stick 
corresponds to a mixture component weight. These weights 
are constrained to sum to 1. 



1.2.  English and Mandarin Speech Recognition 

As of 2009 Ethnologue reported 6,909 living languages in the 
world and of those Mandarin and English are numbers one and 
three (respectively) of the most commonly spoken [8]. 
Moreover, these two languages come from separate families 
and are linguistically and phonetically very different. For these 
reasons English and Mandarin are selected to ensure that the 
performance of AVDPM, CVSB, and CDP are not heavily 
influenced by any language specific artifacts. 

Based on NIST benchmarks Mandarin speech recognition 
tasks have historically yielded worse error rates than 
comparable English ones [9]. There are many factors that this 
disparity can be attributed to such as Mandarin’s flexible 
grammatical structure, relatively high number of homophones 
(about 1,300 syllables compared to approximately 10,000 for 
English [10]) and, most conspicuously, the tonal nature of the 
language. Unlike English, whose phoneme labels are all 
unique, each vowel in Mandarin can take five different tones 
(4 distinct tones and 1 neutral tone). Thus, where English has 
approximately 40 phoneme labels, Mandarin actually has close 
to 90. The scope of this work is constrained to phoneme 
recognition so that other factors, such as language modeling, 
are decoupled. 

2.  Nonparametric Bayesian Approaches 
Parameterized models have been widely applied to clustering 
and classification problems for their ease of use, simplicity, 
and reasonable performance. Unfortunately, they require 
making assumptions about data structure and sometimes 
generalize poorly. Nonparametric methods, on the other hand, 
do not suffer from these limitations but, due to their complex 
nature, require inference algorithms to make posterior 
calculations tractable. In this section, a brief overview of one 
such nonparametric method, a DPM, is provided.  

2.1.  Dirichlet Distributions and Dirichlet Processes  

One of the main drawbacks of typical, parametric speech 
recognition systems is the assumption that the number of 
mixture components for each phoneme model is known and is 
held constant for every model. For complex data such as 
speech this is largely presumptuous and it would be more 
reasonable to assume that each phoneme model has its own 
unique structure.  

Creating a model to characterize the optimal number of 
mixture components is best represented by a multinomial 
distribution. To model this in a statistically meaningful way 
priors are needed to ascertain information such as the number 
of mixture components and their respective weights. Dirichlet 
distributions act as the conjugate prior for the multinomial 
distribution, and in the case of this work, can be used to find 
the optimal number of mixture components. An extension of 
the Dirichlet distribution, the Dirichlet process (DP), is used to 
then generate discrete priors for modeling the respective 
weights of these components.  

A Dirichlet distribution (DD) is often referred to as a 
distribution over distributions and is given by: 
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where q and α are a set of distributions and their respective 
concentration parameters (i.e. inverse variances) such that 

q = |q1, q2,  …, qk| , qi ≥ 0, 1 1k
ii q= =∑  and, α = |α1,  α2, …, αk|, 

αi > 0, and 0 1
k

iiα α==∑ . Furthermore, the decimative property 
of DDs explains that each distribution, qi, can be split in such a 
way that (q11, q12, q2, …, qk) ~ Dir(α1β1, α1β2, α2, …, αk) where 
q11+q12=q1 and β1+β2=1. 

A DP is a DD split infinitely many times, ultimately 
generating discrete values that serve as priors. This can be 
seen in Figure 2 where a DD is initially set to a uniform 
distribution. After an infinite number of splits, the resulting 
distributions are infinitely narrow and essentially discrete 
values are obtained which serve as priors for the models in this 
work. Although there are many representations of DPs, all 
three algorithms used in this work focus on the stick breaking 
approach shown in Figure 1.  

2.2.  Variational Inference Algorithms  

As mentioned earlier, variational inference converts the 
sampling problem of MCMC methods into an optimization 
problem. A variational distribution, q(y), which has made 
independence assumptions about model parameters, is used to 
approximate the posterior, p(y|x). More specifically, these 
algorithms assume that the distributions that represent stick 
lengths (and by extension, mixture component weights), 
component structure (i.e. means and covariances of a Gaussian 
for this work), and mixture assignments are all independent. 
This relationship can be seen in (2), (3), and (4) below. By 
using optimization techniques such as the EM algorithm and 
the Kullback-Leibler (KL) divergence as a cost function, an 
optimal q(y) can be found from a set of distributions Q = {q1, 
q2,… ,qk}. Thus, new stick breaks, i.e. mixture components, are 
released as the KL divergence is minimized.  

Even variational inference algorithms can be 
computationally inefficient and often require additional 
constraints to make their use viable. AVDPM incorporates 
KD-trees which can be used during preprocessing to organize 
the data by partitioning them across hyperplanes in the feature 
vector space. Lower initial depths essentially result in shorter 
training times at the expense of accuracy. Moreover, AVDPM 
limits the number of mixture components to a truncation level, 
T, such that additional components, L>T, can exist but are tied 
to their priors. For AVDPM the factorized variational 

  
Figure 2: A diagram showing how splitting a Dirichlet 
distribution infinitely many times yields discrete values. 



distribution is given by [3]: 
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where qϕ(vi), qϕ(ηi), and qz(zn) represent parametric models 
for stick lengths, the components’ structures (e.g. µ and σ for 
Gaussians), and mixture component assignments respectively. 
Each of the parametric models’ respective parameters are 
given by ϕ.  

CVSB and CDP, on the other hand, do not incorporate 
KD-trees but instead use a “hard” truncation level. This 
essentially limits the DPM to a finite but large number of 
mixture components, T. The variational distribution for CVSB 
is almost identical to that used for AVDPM [2]:  
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While CVSB can have variable stick lengths, CDP 
imposes a symmetric prior on the variational distributions, i.e. 
the lengths of k stick breaks are all equal and thus weights of 
mixture components are all equal. This essentially reduces the 
DP to a DD and allows for the exchangeability of labels. The 
factorized variational distribution for CDP is [2]: 
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The primary difference between (3) and (4) is the replacement 
of q(v) by q(c). The ith stick break, vi, represents the fraction of 
the remaining stick length and is modeled with a beta 
distribution [7] while ci is the actual mixture weight (i.e. the 
fraction of the original, whole stick). Since the length of each 
stick break is held constant, the effect from the stick lengths 
can be removed from the product in (3) and replaced by q(c). 

3.  Experimental Setup 
In this work, the performance of AVDPM, CVSB, and CDP 
was compared to a standard Gaussian mixture model. This 
section outlines some of the key details used in this work. 

Labels for the CH-E Corpus consisted of the 39 phonemes 
found in the CMU7 dictionary [14] as well as three additional 
labels – sp, sil, and a garbage phoneme – which were added to 
account for any partial words or sounds in the data. The CH-M 
Corpus contains 92 phoneme labels consisting of the labels 
found in the CH-M lexicon and the 3 additional labels used in 
CH-E Corpus. Furthermore, English words that exist in CH-M 
are added to the CH-M lexicon where any English vowel 
sounds are assigned to the neutral tone. The relatively high 
number of labels is due to the tonal nature of Mandarin which 
requires all vowel sounds to have 5 labels (e.g. vowel “a” is 
actually “a1”, “a2”, “a3”, “a4”, and “a5”).  

Phoneme alignments were generated by training a hidden 
Markov model (HMM) based acoustic model using a flat start 
and training up to 16 monophone mixtures. Finally, a Viterbi 
alignment was performed to identify phoneme segments. Any 
utterances from the corpora that contained simultaneous 
speech from multiple speakers were discarded.  

Using the generated segmentations, 13 MFCC features and 
their first and second derivatives were extracted using a frame 
duration and window duration of 10 ms and 25 ms 
respectively. The frame-based features from each phoneme 
segment were averaged in a 3-4-3 manner so that the number 
of features per segment was constant despite duration 

(although duration was added as a single additional feature). 
Models were trained for each phoneme label and predictions 
were generated using maximum likelihood. Diagonal 
covariances were used to train the GMM models and the 
number of mixture components was held constant for all 
phoneme labels. Conversely, AVDPM, CVSB, and CDP 
found this number, and the corresponding means and 
covariances, automatically. 

The best of 10 iterations of the GMM baseline was 
compared to the average performance of AVDPM, CVSB, and 
CDP over 10 iterations. Performance was evaluated using both 
error rates and the average number of mixture components per 
phoneme label.  

These algorithms were initially evaluated on the 
well-calibrated TIMIT Corpus to confirm that this setup 
produced comparable performance to other published results. 
Following the methods in [11]-[13], the corpus was partitioned 
into training, validation, and evaluation sets. The 61 original 
phonemes that exist in TIMIT were collapsed to 39 labels. 
GMMs were first fit using the phoneme alignments provided 
with TIMIT. The number of mixture components was varied 
for the GMMs and an optimal performance of 31.56% 
misclassification error was achieved for 4 mixture components 
per phoneme label. This was comparable to the results found 
in [13] although for a much lower number of mixture 
components (i.e. 4 mixtures vs. 64 mixtures). This discrepancy 
was due to the use of features only from the central portion of 
each phoneme segment instead of the 3-4-3 approach used in 
this work [13]. With this confirmation, phoneme alignments 
were then generated for the collapsed 39 labels in the same 
manner used for CH-E and CH-M. These results are discussed 
in the following section and allowed for a better comparison to 
the performance on CH-E and CH-M. 

4.  Results and Discussion 
The truncation level for CVSB and CDP was varied to 
determine an optimal operating point for each corpus. 
Similarly, the initial depth of the KD tree was adjusted for 
AVDPM to determine the effect on performance. Each 
algorithm was iterated ten times and an average 
misclassification error rate was calculated. The best error rates 
are shown in Table 1, along with their associated parameter 
values. 

It can be seen that the average misclassification error of all 
three variational inference algorithms yield comparable error 
rates and require significantly fewer mixture components than 
the baseline GMM model where the number of components is 
assumed to be known a priori. This is due to the ability of 
DPMs to discover the underlying structure of the data and 
consequently less prone to overfitting. 

 It is interesting to note that relative performance of CVSB 
and CDP was worse for TIMIT than both CH-E and CH-M. 
This is most likely an artifact of the studio recorded, read 
speech of TIMIT which allows for the fixed number of 
mixture components of the GMM to reasonably approximate 
the underlying structure of the data. Conversely, CVSB and 
CDP are better suited to conversational telephone speech 
where the underlying structure is less apparent. Finally, the 
relatively small disparity between Mandarin and English can 
easily be attributed to Mandarin having more than double the 
number of phoneme labels as English, i.e. each phoneme’s 
model is trained on less than half the number of segments as 
those for English.   



It can be seen in Table 1 that both CH-E and CH-M have 
the same optimal truncation levels for CVSB and CDP with 
the exception of CDP on CH-E. This is not unexpected since 
the symmetric prior CDP imposes on the lengths of the stick 
breaks indicates that there should be an equal or greater 
number of mixture components compared to those found by 
CVSB to compensate for that assumption.  

AVDPM’s performance and average number of mixture 
components are comparable to both CVSB and CDP. 
However, the incorporation of KD trees make it more 
attractive for acoustic modeling since larger data sets can be 
managed by trading off the depth of the KD tree. The 
computational complexity of this algorithm grows rapidly as 
depth increases [3], but it can be seen in Table 1 that speech 
from significantly different recording environments have 
optimal operating points at similar initial depths of the KD 
tree. Although the optimal depth for CH-E and CH-M are 6 
and 8, reducing the depths to 4 was found to only marginally 
worsen the error rates (by 1.32% and 1.14% respectively).  

This is particularly interesting as Figure 3 shows the actual 
measured CPU times for training as a function of the amount 
of training data for AVDPM, CVSB, and CDP. CPU times 
were obtained using optimal operating points on TIMIT when 
the initial depth of the KD tree is set to 4 for AVDPM and the 
truncation level to 4 for both CDP and CVSB. These plots 
were extrapolated to show the theoretical training time for a 
much larger corpus such as Fisher [15]. We have generated 
these extrapolated results using simulated data since we do not 
have access to corpora of this size. These run-time differences 
held for simulated data and should not be data dependent. 

It can be seen here that the required training times of 
CVSB and CDP grow rapidly as the number of training 
samples increases. Furthermore, CH-E and CH-M require 

higher truncation levels. As can be seen in Table 1, these 
algorithms generally choose the maximum number of mixture 
components (this is at least true for relatively low truncation 
levels). This indicates that the training time should increase 
linearly as the truncation level increases. The error rates 
generated by AVDPM are optimal (or very near optimal) at a 
low initial depth of the KD tree. The complexity of initially 
building the KD tree has a significant cost which accounts for 
the relatively large gap in training times for small amounts of 
training data between AVDPM and CVSB or CDP. However, 
it is shown in Figure 3 that the training time required by 
AVDPM is significantly less affected as the amount of data 
increases and would be almost two orders of magnitude faster 
when training on a large corpus such as Fisher. 

5.  Conclusions 
Dirichlet distributions, and by extension DPMs, can be used to 
find underlying structure of data, e.g. the number of mixture 
components in a GMM. For further improvements these 
nonparametric models can be extended to HMMs to not only 
find the structure of each state’s distribution but to also find 
the structure of the HMM itself, i.e. the number of states and 
the transitions between them. However, due to these methods’ 
infinite parameters variational inference algorithms are needed 
to make posterior calculations tractable. In this work, it is 
shown that three variational methods – AVDPM, CVSB, and 
CDP – are not subject to language specific artifacts and yield 
comparable performance to baseline GMMs but with 
significantly fewer parameters.  

CVSB and CDP have optimal truncation levels between 4 
and 10 for speech data and can perform well on small corpora 
such as TIMIT. However, AVDPM is best suited to acoustic 
modeling since controlling KD tree depth allows for the 
tradeoff between accuracy with available computational 
resources, thereby making training on large corpora possible. 
An initial depth of 4 for AVDPM yielded optimal, or very near 
optimal, results for data ranging from cleanly recorded read 
speech to noisy conversational telephone speech. Furthermore, 
this algorithm is significantly less affected by the amount of 
training data and is theoretically able to train large corpora 
orders of magnitude faster than CVSB or CDP.  
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Table 1: A comparison of best misclassification error and number of mixture components for the evaluation sets of the TIMIT, CH-E, 
and CH-M corpora. The parameters corresponding to these operating point are also given. 

Model 
TIMIT CH-E CH-M 

Error % Notes Error 
% Notes Error 

% Notes 

GMM 38.02% # Mixt. = 8 58.41% # Mixt. = 128 62.65% # Mixt. = 64 

AVDPM 37.14% Init. Depth = 4 57.82% Init. Depth = 6 
Avg. # Mixt. = 5.14 63.53% Init. Depth = 8 

Avg. # Mixt. = 5.01 

CVSB 40.30% Truncation Level = 4 58.68% Truncation Level = 6 
Avg. # Mixt. = 5.89 61.18% Truncation Level = 6 

Avg. # Mixt. = 5.75 

CDP 40.24% Truncation Level = 4 57.69% Truncation Level = 10 
Avg. # Mixt. = 9.67 60.93% Truncation Level = 6 

Avg. # Mixt. = 5.75 
 

 

Figure 3: A diagram showing how the CPU training time 
changes as the amount of training data increases. 
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