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Abstract— In this paper we introduce a new nonparametric 

Bayesian HMM based on the well-known HDP-HMM model. 

Unlike the original ergodic model, our model has a left-to-right 

structure. We introduce two approaches to adding non-emitting 

states that are used to model the beginning and end of finite 

duration sequences. Finally, we extend the HDP-HMM definition 

by introducing an HDP-HMM with HDP mixture emissions. We 

demonstrate that the new model outperforms the ergodic model 

for problems involving temporal structure by producing a 15% 

increase in likelihoods. Experiments on a phoneme classification 

task resulted in an 15.3% relative reduction in error. 

Keywords—HDP-HMM; none-parametric Bayesian; Left-to-

Right models; HMMs; Hierarchical Dirichlet Model  

Regular Research Paper 

I. INTRODUCTION  

Hidden Markov models (HMMs) [1] are among the most 
powerful statistical modeling tools and have found a wide 
range of applications in many pattern recognition tasks such as 
speech recognition, machine vision, genomics and finance [2]. 
HMMs are parameterized both in their topology (e.g. number 
of states) and emission distributions (e.g. Gaussian mixtures). 
Model comparison methods are traditionally used to optimize 
the number of states and mixture components. However, these 
methods are computationally expensive and moreover there is 
no consensus on an optimum criterion for the selection [3].      

An infinite HMM has been developed in the last few years 
[4][5][6] based on nonparametric Bayesian approaches. In this 
model, instead of defining a parametric prior over the transition 
distribution, a hierarchical Dirichlet process (HDP) prior is 
used. This model is known as an HDP-HMM model. HDP-
HMM introduced in [5] and [6] is an ergodic model (a 
transition from an emitting state to all other states is allowed). 
However, in many pattern recognition applications involving 
temporal structure, such as speech processing, a left-to-right 
topology is preferred or sometimes required [7][8]. For 
example, in continuous speech recognition applications we 
model speech units (e.g. phonemes), which evolve in a 
sequential manner, using HMMs. Since we are dealing with an 
ordered sequence (e.g. a word is an ordered sequence of 
phonemes), a left-to-right model is preferred [7]. Moreover, the 
segmentation of speech data into these units is not known in 
advance, and therefore the training process must be able to 

connect these smaller models together into a larger HMM that 
models the entire utterance. Obviously, this task can easily be 
achieved using left-to-right (LR) HMMs. 

If the data has a finite length, the beginning and end of a 
sequence is typically modeled as two additional discrete events 
– non-emitting initial and final states [1][7]. In the original 
HDP-HMM formulation [5][6], this problem is not addressed. 
Also, the original HDP-HMM, as well as parametric HMMs, 
models each emission distribution by data points mapped to 
that state. For example, if we use a Gaussian mixture model 
(GMM) to model the emission distribution, for every state we 
compute a separate GMM and components can’t be shared or 
re-used within a model. In this paper we propose a left-to-right 
HDP-HMM (LR HDP-HMM) with non-emitting initial and 
final states. In our model, emission distributions are modeled 
using GMMs with an infinite number of components. Sharing 
components is achieved by using an HDP prior instead of 
Dirichlet process (DP) priors as in [6]. 

The paper is organized as follows. In Section 2, we 
introduce Dirichlet processes and the HDP-HMM model. In 
Section 3, our proposed model is discussed. In Section 4, we 
present some experimental results on two datasets. We 
conclude the paper in Section 5 with a discussion of the 
limitations of the current model and future work. 

II. BACKGROUND 

A Dirichlet process [9] is a discrete distribution that 
consists of countable infinite probability masses. A DP is 
denoted by DP(α,H), where α is the concentration parameter 
and H is the base distribution. A DP can be represented by 
[10]: 
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In this definition,  
k

  is the unit impulse function at θk, and is 

referred to as an atom [5]. The weights βk are sampled through 

a stick-breaking construction [5][10]: 
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The sequence of βk sampled by this process satisfies the 

constraint 
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    with probability 1 and are denoted by 

β~GEM(α) [5]. One of the main applications of a DP is to 
define a nonparametric prior distribution on the components of 
a mixture model. For example, a DP can be used to define a 
Gaussian mixture model (GMM) with an infinite number of 
mixture components [11]. This is a useful model in many areas 
of science. For example, in speech recognition, an acoustic unit 
(a word or a phoneme) can be modeled using a GMM [1].         

A hierarchical Dirichlet process extends a DP to grouped data 
[5]. In this case there are several related groups and the goal is 
to model each group using a mixture model. These models can 
be linked using traditional parameter sharing approaches. For 
example, consider the problem of modeling acoustic units, 
such as phonemes, in continuous speech recognition using a 
mixture model in which parameters of different acoustic units 
can be shared. One approach is to use a DP to define a mixture 
model for each group and to use a global Dirichlet process, 
DP(γ,H),  as the common base distribution for all DPs [5]. An 
HDP is defined as:  
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where H provides the prior for the parameters and G0 
represents the average of the distribution of the parameters 
(e.g. means and covariances). 

An alternative analogy, which is useful for gaining insight 
into the inference algorithms, is based on the concept of a 
Chinese restaurant franchise (CRF) [5]. In a CRF, a franchise 
consists of several restaurants with a common franchise-wide 
menu. Customers represent observed data, tables represent 
clusters and restaurants represent groups. The first customer 
entering restaurant  j sits at one of the tables and orders an item 
from the menu. The next customer either sits at one of the 
occupied tables and eats the food served at that table or sits at a 
new table and orders new food from the menu. The probability 
of sitting at a table is proportional to the number of customers 
already seated at that table. However, if a customer starts a new 
table (with probability proportional to α), he or she orders food 
from the menu with a probability proportional to the number of 
tables serving that food in the franchise, or alternately orders a 
new food item with a probability proportional to γ. 

An HDP-HMM [4][5][6] is an HMM with an unbounded 
number of states. In a typical ergodic HMM, the number of 
states is fixed so a matrix of dimension N states by N 
transitions per state is used to represent the transition 
probabilities. In an HDP-HMM, the transition matrix is 
replaced by an infinite, but discrete transition distribution, 
modeled by an HDP for each state. This lets each state have a 
different distribution for its transitions while the set of 
reachable states would be shared among all states. Fox et al. [6] 
extended the definition of HDP-HMM to HMMs with state 
persistence by introducing a sticky parameter κ. The definition 
for HDP-HMM is given by: 
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The state, mixture component and observation are represented 

by zt, st and xt respectively. The indices j and k are indices of 

the state and mixture components respectively. The base 

distribution that links all DPs together is represented by β and 

can be interpreted as the expected value of state transition 

distributions. The transition distribution for state j is a DP 

denoted by πj with a concentration parameter α. Another DP, 

ψj, with a concentration parameter ϭ, is used to model an 

infinite mixture model for each state (zj). The distribution H is 

the prior for the parameters θkj. If we want the posterior 

distribution over the parameters to remain in the same family 

as the prior, then H should be chosen to be a conjugate prior to 

the observation likelihood. Since the likelihood has a 

multivariate normal distribution, H should have normal 

inverse Wishart (NIW) distribution. 

III. A LEFT-TO-RIGHT HDP-HMM WITH HDPM EMISSIONS 

Hidden Markov models (HMMs) are a class of doubly 
stochastic processes in which discrete state sequences are 
modeled as a Markov chain [1]. The state of a Markov chain at 
time t is denoted by zt and an observation is denoted by 

,~ ( )
t tt z sx F  where F is the emission distribution (e.g., a 

Gaussian mixture) and st is a mixture component index. In an 
HMM, there is a probability distribution to transit into state zt. 
In an infinite HMM, this transition distribution should have 
infinite support and is modeled using HDP. For state j this 
transition distribution is denoted by πj: 
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From (5) we can see that the transition distribution has no 
topological restriction and therefore (4) defines an ergodic 
HMM. In this section we introduce a left-to-right HDP-HMM 
with initial and final non-emitting states. Moreover, we replace 
DP with HDP to model multimodal emission distributions that 
allow states to share mixture components.   

A.   Left-to-Right Transition Distributions  

In order to obtain a left-to-right (LR) topology we need to 
force the base distribution of the Dirichlet distribution in (5) to 
only contain atoms to the right of the current state. This means 
β should be modified so that the probability of transiting to 
states left of the current state (i.e. states previously visited) 
becomes zero. For state j we define Vj={Vji} as: 
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where i is index for all states. Then we can modify β by 

multiplying it with Vj: 
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Therefore to obtain a left-to-right HDP-HMM, which we 

refer to as LR HDP-HMM, we simply replace  with β in (5). 

The rest of the definition remains the same. Also notice that 
different topologies can be achieved by defining an appropriate 
Vj .  

B. Initial and Final Non-Emitting States 

In many applications, such as continuous speech 
recognition, a LR HMM begins from and ends with non-
emitting states. These states are required to model the 
beginning and end of finite duration sequences. Adding a non-
emitting initial state is trivial: the probability of transition into 
the initial state is 1 and the probability distribution of a 
transition from this state is equal to πinit which is the initial 
probability distribution for an HDP-HMM without non-
emitting states. However, adding a final non-emitting state is 
more complicated.  In the following we will discuss two 
approaches to solving this problem. 

1) Maximum Likelihood Estimation 

Consider state zi depicted in Figure 1. The outgoing 
probabilities for any state can be classified into three 
categories: (1) a self-transition (P1), (2) a transition to all other 
states (P2), and (3) a transition to a final non-emitting state 
(P3). These probabilities must sum to 1: P1+P2+P3=1. 
Suppose that we obtained P2 from the inference algorithm. We 
will need to reestimate P1 and P3 from the data. This problem 
is, in fact, equivalent to the problem of tossing a coin until we 
obtain the first tails. Each head is equal to a self-transition and 
the first tails triggers a transition to the final state. This can be 
modeled using a geometric distribution [12]: 
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Equation (8) shows the probability of K-1 heads before the 
first tail. In this equation 1-ρ is the probability of heads 
(success). We also have: 
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Suppose we have a total of N examples but for just M 
examples the state zi is the last state of the model (SM). It can be 
shown [12] that the maximum likelihood estimation is obtained 
by: 
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where ki are the number of self-transitions for state i. Notice 

that if zi never happens to be the last state (M=0), P3=0. 

2) Bayesian Estimation 

Another approach to estimate ρ is to use a Bayesian 
framework. Since a beta distribution is the conjugate 
distribution for geometric distribution [13], we can use a beta 
distribution with hyperparameters (a,b) as the prior and obtain 
a posterior as [13][14]: 
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where M and SM are same as in the previous section. 

Hyperparameters (a,b) can also be estimated using a Gibbs 

sampler if required [15]. 

 

C. HDP Mixture Emission Distributions  

In previous works [5][6], emission distributions for each 
state of an HDP-HMM were modeled using a Dirichlet process 
mixture (DPM) as shown in  (4). While this model is 
reasonably flexible, each data point is strictly associated with a 
single state and hence statistical estimation of each parameter 
would be less reliable. This is a more serious problem for 
HDP-HMMs with a left-to-right topology since these models 
will discover more states. As a result the available data for 
estimating the emission distribution for each state would be 
more limited. The solution proposed here is to replace the 
DPM with an HDP mixture (HDPM) defined for the entire 
HMM. The final model without non-emitting states, which we 
refer to as LR HDP-HMM/HDPM, is defined by  (12) and is 
displayed in Figure 2-(b). For comparison purposes, we display 
the original HDP-HMM in Figure 2-(a) [6].  

 

 

 

 

 
 

Figure 1- Outgoing probabilities for state zi  
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D. Modified Block Sampler  

A block sampler for HDP-HMM with a multimodal 
emission distribution has been introduced by Fox et al. [6]. In 
this section we review the modifications of this algorithm 
needed for our new model. The interested reader should refer 
to [6][16] for additional details.  The central idea is to jointly 
sample the state sequence z1:T given the observations, model 
parameters and transition distribution πj. A variant of forward-
backward procedure [1] is utilized that allows us to exploit the 
Markovian structure of the HMM. However it requires 
approximation of the theoretically infinite distributions with a 
“degree L weak limit” approximation that truncates a DP into a 
Dirichlet distribution with L dimensions [17]: 
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The sampling of the transition distribution is similar to [6]. 

The only difference is to replace β with   given in (7).  Using 

a similar approximation we can write the following prior 

distributions for the global weights   and state-specific 

weights j  used in the HDPM emission distributions. 
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where L  is the order of approximation in this case.  For the 

posterior distribution we can write: 
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where Mjk is the number of tables (clusters) in restaurant 

(state) j that serves dish (mixture component) k; kM is total 

number of tables in the franchise that serves dish k. The 
number of observations in state j that are assigned to 

component k is denoted by jkn . Estimating transition 

probabilities for the final non-emitting state can be done as a 
last step and after estimating the other parameters.  

IV. EXPERIMENTS 

Synthetic data. In the first experiment, we generate data 
from a left-to-right HMM without non-emitting states that 
consists of four states. The emission distribution for each state 
is a GMM with up to three components, each consisting of a 
two-dimensional normal distribution. Three synthetic data 
sequences totaling 1900 observations were generated for 
training. Three configurations have been studied: (1) an 
ergodic HDP-HMM, (2) a LR HDP-HMM with DPM 
emissions and (3) a LR HDP-HMM with HDPM emissions. 
An NIW prior is used for the mean and covariance. The 
truncation levels are set to 10 for both the number of states and 
the number of mixture components. Parameters of the NIW are 
set as follows: pseudocounts, the number of pseudo 
observations for the sample mean, is set to 0.1; the sample 
mean and covariance are set to the empirical mean and 
covariance; and degree of     freedom, which is the precision on 
sample covariance, is set to 5. 

Figure 3-(a) shows the average likelihoods for different 
models for held-out data by averaging five independent chains. 
Figure 3-(b) shows the structure of the models. The LR HDP-
HMM/HDPM discovers the correct structure while the ergodic 
HDP-HMM finds a more simplified HMM. Moreover, we can 
see using HDP emissions improves the likelihood. While LR 
HDP-HMM/DPM can find the structure close to the correct 
one (not shown here), its likelihood is slightly less than that for 
the ergodic HDP-HMM. However, LR HDP-HMM/HDPM  

 

Figure 2- A comparison of models: (a) ergodic HDP-HMM [6] (b) proposed LR HDP-

HMM/HDPM. 

 



produces a 15% improvement in likelihoods compared to the 
ergodic model. It is also interesting to note that the likelihoods 
of models discovered by all HDP-HMM algorithms are 
superior to the likelihood of the reference model itself.   

TIMIT Classification. The TIMIT Corpus [18] is one of the 
most cited evaluation data sets used to compare new speech 
recognition algorithms. The data is segmented manually into 
phonemes and therefore is a natural choice to evaluate 
phoneme classification algorithms. TIMIT contains of 630 
speakers from eight main dialects of American English [18]. 
The total numbers of utterances are 6300 where 3990 
utterances are the standard training set and 150 utterances are 
core test set.  We followed the standard practice of building 
models for 48 phonemes and then map them into 39 phonemes 
[19]. The first 12 Mel-Frequency Cepstral Coefficients 
(MFCCs) plus energy and their first and second derivatives 
features have been used to convert speech data into 39-
dimensional feature streams. In this experiment, LR HDP-
HMMs with Gaussian and DPM emissions have been used. We 
have used non-conjugate priors and placed a Gaussian prior on 
the mean and inverse-Wishart prior on the covariance matrix. 
Truncation levels are set to 10. 

Table 1 compares the classification error of the left-to-right 
models and the parametric models. Since the maximum 
number of mixture components is set to 10, we have compared 
our systems to parametric HMMs with 10 components per 

state. As this table shows, even left-to-right HDP-HMM with 
Gaussian emissions outperforms the parametric model.  

Figure 4 shows the discovered structure for phonemes /aa/ and 
/sh/ using the proposed model. As the amount of data increases 
the system can learn a more complex model for the same 
phone. It is also important to note that the structure learned for 
each phone is different and reflects underlying differences 
between phonemes. Also note that the learned structure models 
multiple modalities by learning several parallel left-to-right 
paths. This is shown in Figure 4-(c), where S1-S2, S1-S3 and 
S1-S4 depict three parallel models.  

V. CONCLUSION  

In this paper we introduced a left-to-right HDP-HMM with 
HDPM emissions. We have shown that the new model can 
successfully learn the underlying structure when the data is 
generated using a generative left-to-right model. Moreover, it 
has been shown that the likelihood of the learned model is 
higher than the ergodic model. In this paper we have also 
introduced two approaches to adding non-emitting initial and 
final states to the left-to-right HDP-HMM model. Finally we 
presented the modifications needed in the block sampler to 
implement the inference algorithm for the new model. Through 
experimentation on TIMIT, we have shown that the proposed 
model outperforms parametric HMMs and can learn 
multimodal structure from the data. 

One of the current problems of the HDP-HMM model 
(including left-to-right model) is that the inference algorithm is 
still computationally expensive. It is a serious problem when 
we are dealing with large datasets such as in speech or video 
processing applications. Therefore, our next task is to improve 
the inference algorithm specifically for left-to-right HDP-
HMMs with HDPM emissions using its specific properties and 
structure. For example, due to the left-to-right constraints, the 
number of possible transitions in state 1 is L, in state 2 is L-1 
and in state L is 1. We can exploit this fact to reduce the 
computational complexity.  

 

Figure 3- A comparison of (a) log-likelihoods of the proposed models to an ergodic model, and 

(b) the corresponding model structures. 
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Table 1- A comparison of classification error rates 

Model Classification 

Error Rate 

Parametric HMM [19] 

(10 mixtures) 
27.8% 

LR HDP-HMM 

with Gaussian emissions 
26.7% 

LR HDP-HMM 

with DPM emissions 
24.1% 

 



Another possible direction is to replace HDP emissions with 
more general hierarchical structures such as a Dependent 
Dirichlet Process [20] or an Analysis of Density (AnDe) model 
[21]. It has been shown that the AnDe model is the appropriate 
model for problems involves sharing statistical strength among 
multiple set of density estimators [5][21]. 
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Figure 4- An automatically derived model structure for a left-to-right HDP-HMM model (without 

the first and last non-emitting states) for  (a) /aa/ with 175 examples (b) /sh/ with 100 examples (c) 

/aa/ with 2,256 examples and (d)  /sh/ with 1,317 examples. The data used in this illustration was 

extracted from the training portion of the TIMIT Corpus. 


