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Adapting ASR Software for Fatigue Detection
H.P Greeley, J. Picone, S. Raghavan, J. Berg, E. Friets, J. Wilson
Abstract—Military and civilian experience has shown that long-duration assignments present increased risk of performance failures as the mission progresses.  This is due to interruption of normal sleep cycles and to the psychological pressures of the living and working environment.  There continues to be a need for a non-obtrusive fatigue assessment system to successfully monitor the level of alertness of all personnel during critical missions or dangerous activities. Our experimental data shows that specific phones have a predictable dependence on fatigue and, as such, precise phonetic identification and alignment is key to voice-based fatigue detection. This paper describes the development of an ASR system which provides the phonetic alignment accuracy necessary for the practical application of a voice-based fatigue prediction system.  
Index Terms— Fatigue detection, voice analysis, speech recognition, confidence measures.
I. INTRODUCTION

 The unique characteristics of the military and aviation environment make war fighters and civilian pilots particularly susceptible to fatigue.  Environmental factors such as movement restriction, poor air flow, low light levels, background noise, and vibration are known to cause fatigue [1]. In addition, the introduction of advanced automation has changed the nature of the job for these individuals.  “Hands-on” activities have been replaced by greater demands on the crew to perform vigilant monitoring of automated systems, a task that people find tiring if performed for long periods of time [2]. The massive literature on fatigue has identified a number of symptoms that indicate the presence of fatigue, including: increased anxiety, decreased short-term memory, slowed reaction time, decreased work efficiency, reduced motivational drive, decreased vigilance, and increased errors of omission. An analysis of NASA’s Aviation Safety Reporting System (ASRS) revealed that 3.8 percent of air transport crew member error reports were directly associated with fatigue [3]. However, when factors related to fatigue, such as inattention or a miscommunication, are considered, the number increases to 21.1 percent.  Fatigue also results in an increase in a person’s level of acceptable risk in an attempt to avoid additional effort [4]
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[5]. 
Sleep is often the prescribed remedy for fatigue and its related problems.  Roehrs [6] showed that when short and long sleepers were required to stay in bed for ten hours, all subjects slept about an hour longer than usual.  The result was that all subjects improved in their alertness, vigilance, and reaction time.  The benefits of sleep are presently considered to be logarithmic in nature, with initial hours showing significantly greater benefits that diminish as one approaches his or her optimum sleep level.  This accounts for how one can sleep less and still appear to function normally.  However, the Reserve Capacity of Brain Function (RCBF), the brain’s ability to handle situations beyond that of normal and for longer periods, is restored only after a totally recuperative sleep cycle [7]. Thus, an individual with low RCBF may be able to perform routine duties without a problem, but be unable to successfully deal with emergency situations.  Also, as mentioned above, this individual is more likely to employ shortcuts in an effort to reduce workload, thus making accidents (emergency situations) more likely.
Work assignments for personnel are scheduled around “off-duty” and sleep intervals designed to prevent the situations described above.  However, the effect of sleep is difficult to predict since it is dependent upon the quality of sleep and upon the individual’s sleep history over the past few days [8]. Thus, even after an off-duty period, there is clearly a need for a qualitative measure of the fatigue level of any individual prior to and during resumption of a critical mission or potentially dangerous duties.  

Personnel operating at unacceptable levels of cognitive performance present a danger to their mission, to themselves, and to their work team.  Military planners recognize that if engagements are necessary, then the weakest link will likely be human and not hardware.  Being able to quickly and non-obtrusively monitor an airman’s or soldier’s level of alertness prior to and during the undertaking of a critical mission activity would provide commanders with critical information regarding personnel assignments and certainly save lives and increase the likelihood of mission success.  Unfortunately, there are no cognitive assessment tests that have been proven to be effective in the field under conditions of high stress and limited testing time per subject. This paper details our approach to the development of a voice-based fatigue prediction system.
II. Acoustic Correlates with Fatigue

Voice has been shown to be sensitive to fatigue.  While analyzing changes in the voice patterns of B-1B bomber aircrew men during sustained operations, Whitmore and Fisher [9] have shown that speech data follow the same trend as the data from cognitive tests and subjective measures of alertness.  These results were obtained by having the test subjects voice two scripted sentences every three hours and then determining fundamental word frequencies and speech duration.  With fatigue, they demonstrated that the fundamental frequency decreases and the word duration increases.  They also note a strong circadian trend in that, overall, the best voice performances (higher frequency, lower duration) occur during normal waking hours and the worst performances occur during normal sleeping hours.  This is also consistent with numerous measures of alertness vs. time cited in the literature [10]
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[12].  Playback of recorded voice tapes, “after-the-fact,” has been used to demonstrate that voice analysis could be used to determine the cognitive and physiological state of operators prior to accidents.  Brenner and Cash [13] used recorded messages over a period of 42 hours from the Exxon Valdez master to identify four effects associated with alcohol consumption just prior to the accident: slowed speech, speech errors, misarticulation of different sounds, and changes in the Speech Quality.  They performed a detailed phonetic spectrum analysis and demonstrated misarticulation of “r” and “l” in words such as “northerly,” “little,” “drizzle,” and “visibility.”  Changes of the sound [iz] to the sound [is] (in Valdez) and the sound [s] to the sound [sh] (in EXXON) were observed. Satio et al.[14] reported changes in the appearance of sound spectrograms from analysis of specific, repeated utterances (“ro” and “ger” in “roger” for example) as a pilot experienced hypoxia prior to a fatal F-104 accident.  
These results support the contention that  voice characteristics are directly related to the speaker’s level of performance which, in turn, is affected by his or her level of fatigue.  Indeed, changes in the articulation of voiced sounds due to fatigue could be considered to be representative of changes in performance related to the control of the body’s voice production mechanisms (tongue, lips etc.).  As Dinges [15] states “across the literature the tasks that most often show sleep loss effects early and profoundly are simple sustained attention reaction time tasks.”  Since assuring high levels of performance in team members is the goal of supervisory personnel, this parameter is more important than an SLT score as a monitoring tool.
Introduction to the correlation approach: Mathematically, the speech signal consists of a convolution of the excitation waveform with the filter description in the time domain or by a multiplication of the transfer functions of the two regions in the frequency domain. There is reason to believe that fatigue is principally reflected in changes in the filter characteristics. In fact, our Phase I analysis confirmed a dependence between metrics related to the filter (formants) and fatigue. It therefore becomes necessary to process the recorded speech signal S(t) in a manner that will reveal filtering effects from the excitation signal. Fig. 1 illustrates how this is accomplished using cepstrum analysis techniques.  
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Figure 1: Cepstrum analysis of a speech signal. Using two discrete Fourier transform processes, the voice signal is representated by a set of cepstrum coefficients. Using this managable number of coeffieicents, the excitation ( e(t) ) and filter ( f(t) ) portions of the human speech production system may be analyzed. Here formants F1 through F4 and fundamental frequency, or voice pitch (F0) are indicated.
In this process, the spectral characteristics of the speech signal are obtained and the logarithm of the resulting amplitudes are calculated. This provides a measure from which excitation and filter components may be separated.
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The log magnitude spectrum is then transformed back to the time domain using a discrete Fourier transform. This process results in the calculation of a discrete (and manageable) number of coefficients (called cepstrum coefficients) that represents separate filter and excitation signals in the time domain. It is important to point out that, the entire speech production process is now characterized by these few cepstrum coefficients. Isolation of the spectral coefficients of either the excitation or filter sections is accomplished by the removal of the irrelevant cepstrum coefficients followed by another conversion to the frequency domain.
From this discussion, it was seen that the entire human speech production process may be described by a manageable number of coefficients. Therefore, instead of tracking changes in specific vocal metrics, such as formants, with fatigue, changes can be tracked in the entire speech production system using an analysis of these coefficients. The software for the frontend calculates 36 mel-frequency cepstrum coefficients (MFCCs).  This “Voice Vector” is comprised 12 cepstral coefficients (MFCC 1—MFCC 12), along with their first and second time derivatives.  Fig.2. is an illustrative example of how the MFCC vector changed over the four-day period of the sleep restriction. 
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Figure 2: Changes in the MFCC Vector During four days of sleep restriction.  Here we illustrate the MFCC vector (36 MFCC components) generated by a single subject‘s utterance of the sound “t”.  As quantified in the legend, the vector during Trials 1 and 10 match better than the vector at Trial 21.

Here an illustration is given of the Voice vector (36 MFCC components) generated by a single subject‘s utterance of the sound “t”. The legend of Fig.2 presents the correlation of the Voice vector at each trial with the Voice vector at the onset of testing (Trial 1).  This metric, which we call the Voice Correlation metric, is used as a means to quantify the subject’s voice at each trial. 
Preliminary Test Results: 
As part of a larger FAA study[16] that involved a 34-hour period of sleep deprivation, six non-medicated subjects were asked to recite a list of 31 words at six testing times (10:00 am, 4:00 pm, 10:00 pm, 4:00 am, 10:00 am, and 4:00 pm). These testing times were selected to represent circadian high and low points in performance.  Also measured during these testing times was sleep onset latency (SOL) which is the individual measurement component of the gold standard for sleepiness testing (the mean sleep latency test or  MSLT ). Briefly, this test involves having the test subject lie on a bed in a quiet, darkened room and telling them to fall asleep. The time, in minutes, that it takes them to fall asleep, as measured by an electroencephalogram (EEG), is the sleep onset latency (SOL). Between tests subjects were allowed low arousal activities such as reading, watching TV and schoolwork. 

6.1 Voice Vs SOL. 

Figure 3 shows the group average change in both SOL and our Voice Correlation metric for the sounds ‘p’ (as in pea) and ‘t’ (as in tea) over the 34 hour testing period. It can be seen from this figure that change in the voiced ‘p’ sound tracks in a manner similar to sleepiness while ‘t’ does not. The correlation coefficient ( R )  between SOL and time awake is -0.825, between Vc(p) and time is -0.89, and between Vc(t) and time is -0.67. From these numbers we estimate (using the value R2 ) that time awake accounts for 68%, 79 %, and 45 % of the variation of SOL, Vc(p) and Vc(t) respectively. 
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Figure 3. Change in the voice vector Vs change in Sleepiness. SOL, sleep onset latency (to stage 2 sleep) trends downward over time for the FAA group average with circadian bumps at 16 and 28 hours awake (10 p.m. and 10 a.m.). Voice correlation (Vc), is the change in the voice vector, as quantified by the correlation with the vector at trial #1. For the sound ‘p’ we observe a trending similar to SOL. The sound ‘t’ does not appear to be as sensitive to sleepiness and the sound ‘p’.

  All three metrics show a circadian peak at 16 hours into the test, however, the SOL peak is significantly greater than the voice peaks. This difference in circadian sensitivity tends to reduce a correlation coefficient-based quantitative comparison however, for purposes of comparison there is a correlation of -0.79 between SOL and Vc(p) and -0.54 between SOL and Vc(t). 

(
The Need to Adapt Speech Recognizer

Our fatigue analysis is done by studying the spectral and temporal characteristics of specific phones extracted from human speech. Specifically, the 36 component MFCC vector (which we call the Voice Vector) for key phones, is monitored over time. As the speaker becomes fatigued, this vector becomes increasingly dissimilar to the voice vector recorded during the speaker’s rested (non-fatigued) state. A statistical analysis of these changes provides us with a prediction of the speaker’s level of fatigue. Because this statistical fatigue analysis requires a lot of data, an Automated Speech Recognizer (ASR) plays a very vital role in the process. 
An ASR provides output with hypothesized words or phones along with their time marks. Matching the phones to the sounds of interest, the corresponding MFCC vectors are written to a ‘feature file’. The general architecture of the fatigue detection system integrated with the automatic speech recognition system is shown in Fig.4.
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Figure 4: Integration of the fatigue detection system with an automatic speech recognition system

Because the prediction software relies upon the ASR to provide MFCC vectors sorted according to specific phones, it is critical that the correct phones are identified from the input stream of audio data. Depending upon that nature of the application, achievement of this requirement has different degrees of difficulty.  For a scenario in which the speakers recite from a fixed list of phrases or words, the ASR has a limited list of words to identify, also, in the case of fixed phrases, the system know the order of word utterances. These conditions result in a high confidence level concerning the correctness of the phone and voice vector identification. 

While this scenario is useful for fatigue research and some operational applications, we believe that our system will find significantly more application if can monitor speakers as they go about their jobs, speaking in normal conversation. This significantly increases the load on the ASR in that any word, in any order, can be part of the audio input. Confidence in the resulting phone outputs, and as such the fatigue prediction, will be reduced. This problem is somewhat reduced in the sense that personnel at many operational sites will use key words over and over again. For instance, military aircraft controllers will use the ‘alpha-zulu’ alphabet to identify aircraft or landing sites. As such only a relative few words need to be recognized while the, more frequent, non-key words in the audio input need to be ignored. 

As a result, we of these factors, we have developed a “word-spotting” ASR that provides a level of confidence metric with each identified word. Using this feature, our fatigue prediction can ignore any voice vector data associated with a low confidence metric.

2. Implementation of the Confidence Metric

There are two methods for obtaining the time information of phonetic labels. The first method is by doing a forced alignment of the reference transcription with the utterance. Forced alignment is the process of using an ASR system with the grammar and the words in the vocabulary restricted to the correct results.    It is called “forced” because the best path is forced to contain the correct word sequence. The output of forced alignment process is feature vectors with correct phonetic labels. Forced alignment is much simpler than conventional decoding since the correct word sequences are already known. This is the case for the fixed word and phrase scenario discussed above. 

A second approach to ASR is to perform normal decoding and obtain the phone alignments, but in this technique the accuracy of the alignments heavily relies on the data because the performance of the system can considerable degrade based on the noise levels, microphone response, sampling frequency, etc. of the data. The recognition performance on our field speech data was only close to 50% using a bigram language model. On clean laboratory data the performance was close to 12% on unseen data and 0.1% on closed loop experiments (training and decoding on the same data). The latter was the case for our investigation into the association between speech and fatigue. 

THE ABOVE PARAGRAPH USES TOO MUCH UNEXPLAINED JARGON…BIGRAM MODEL, THE FIRST SENTENCE DOESN’T REALLY EXPLAIN ANYTHING.
 As discussed above, ‘Word Spotting’ systems are generally used to detect the presence of certain keywords in an utterance [17]. However, in most applications, the user is not interested in the time marks of the detected keywords. But, for fatigue analysis the time marks have to be accurately detected in order to recover the associated MFCC components.  This makes the task of word spotting more challenging. In order to address this problem public domain word spotting ASR software by IES (Intelligent Electronic Systems) was modified at at Mississippi State University [18].
The language model of the ASR software can either be an N-gram, which, uses a finite set of previous words to predict the future word, or loop-grammar where any word can be followed by any other word. For small vocabulary tasks like digit recognition or keyword recognition it is simpler to use a loop-grammar. For the task at hand a loop-grammar based ASR was used since the vocabulary size of keywords in a potential operational site would probable by less than approximately 30 random, isolated  words..
The loop-grammar consists of only the keywords which have to be spotted.  The decoder is guided by the grammar (the list of key words) and only detects the words in the grammar. 

As an example, say that the word spotter is looking for the word PIPE.  The grammar specifies that the word “PIPE” can be followed and preceded by either “PIPE” or “GARBAGE”. Hence, the output of the word spotter should be such that we observe the label PIPE wherever the word occurs in the utterance, and the rest of the decoded utterance should have garbage (not pipe) labels.
Testing the unaltered word spotter software we observed that the specified keyword was spotted correctly most of the time wherever it occurred, but there were also large number of false alarms i.e. other ‘garbage words’ were also deemed to be the keyword.  To overcome the problem of false alarms, a way to determine the confidence of the hypothesized words was needed. As described above, this confidence score can then  be used to set a threshold so that the words with a low confidence estimate can be ignored. 
Our first approach at development of a confidence score was to use the likelihood score generated by the decoder as the confidence measure. Likelihood score is defined as the conditional probability of the acoustic vector (a compilation of word phone components)  given the word. Using this approach, the confidence measure was directly used by the fatigue detection software for analysis. It was observed that the likelihood score did not really follow any useful pattern; hence it was not useful as a confidence measure.  DON’T KNOW WHAT USEFUL PATTERN MEANS
An alternate approach to filter out less probable words was to determine the posterior probability [19] of each word in the hypothesis and use that as a confidence measure. “The posterior probability of a word hypothesis is the sum of the posterior probabilities of all word-graph paths of which the word is a part” [20]. The posterior word probability was computed from word-graphs. Word-graphs are a representation of the search space which consists of various word sequences that a decoder can output only bounded by the vocabulary size. The final word sequence selected by the decoder is the one with the highest posterior probability. The posterior probability in this context refers to the conditional probability of the word sequence given the acoustic vector. This criterion selects the sentence with the lowest sentence error rate but will not guarantee that all the words selected in the sentence are the ones with the highest probability. Figures 5 and 6 illustrate possible probabilities and  paths of a word graph. 
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Figure 5: Section of the word word-graph with preceding and succeeding nodes (W – word, 
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Figure 6: This figure shows how different paths enter and leave node N. It can be seen that there are 6 different ways to reach the node N from the start and 2 different ways to leave the node N to reach the end node.
An elegant method to compute posterior probabilities from word-graphs is to use a forward-backward type algorithm. The equation to compute word-posteriors from a word-graph is given as follows:
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The above equation was taken from Wessel et.al [19] and clearly defines the various quantities required for word posterior computation. The equation can be better understood by looking at Fig.8. The probability of passing through the link W is calculated by determining the probability of reaching the start node of the word from the preceding nodes and the probability of leaving the end node to any of the succeeding nodes. The former is called as the forward probability and the latter as the backward probability. A forward-backward type algorithm is used to traverse through the word-graph and compute the probabilities. The reason for using a forward-backward algorithm can be well understood by looking at the example in Fig.6. Here it can be seen that there are six different ways to reach node N from the start and two different ways to leave the node N. The probability of passing through node N can be obtained by knowing the forward probability and the backward probability of the node. Forward probability is the probability of reaching the node N from the start node, and backward probability is the probability of leaving the node N.

To calculate the probability through a link, the forward probability of the start node and the backward probability of the end node must be known. This is described in Fig.5 using 
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. In Equation 2, the right-hand side term cannot be computed directly. Hence, it was decomposed into likelihood and priors using Bayes rule as follows:

 The numerator term of Equation 3 is calculated by the forward-backward algorithm. The denominator term is the by product of the forward-backward computation and is defined as the sum of all paths through the word-graph. The purpose of the denominator term is to normalize the posterior values. The posteriors computed in this manner can be used as a confidence measure. 
Using this approach to obtaining a confidence metric, we  observe an improvement  compared to the use of the likelihood scores approach, this is illustrated in  Figure7. The curves are plotted from the lattices obtained on same baseline experiment. The correct alignments for the words were determined and similar words falling between the correct time marks were classified as true scores and dissimilar words that matched the correct time marks were classified as impostor scores. With these confidence scores, a threshold can be set to filter out the words with low confidence.
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Figure 7: Detection Error trade off curves showing the improvement achieved by using word posteriors instead of likelihood score.
A better confidence estimate can be obtained by post-processing the posterior scores. There are two popular techniques to do this: 

1) Sum up the posteriors of similar words that fall within the same time frame or choose the maximum posterior value among the similar words in the same time frame Error! Reference source not found..

2) Build a confusion network where the entire word-graph is mapped into a single linear graph i.e. where the links pass through all the nodes in the same order Error! Reference source not found.. An example of a confusion network is shown in Fig.8.  DID THIS GET DONE FOR THE RESULTS TO BE DESCRIBED BELOW ??? If Not probable doesn’t belong here.
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Figure 8: Confusion network generated from a word-graph

3. Preliminary experiments with laboratory data
Experiments were conducted on the laboratory data from four speakers with a vocabulary size of 30 words. All recordings were made in a studio environment. The length of each utterance was approximately 1 minute. The data was segmented to have an average length of 5 seconds, this was done to improve the recognition performance and also to increase the decoding speed. The segmented data was first used for conducting closed loop recognition experiments.
Every state in an Hidden Markov Model (HMM) can be represented by mixtures of Gaussians. The first set of experiments was conducted to determine the optimum number of mixtures that could be used for training the HMMs.   As expected, it was observed that the WER dropped as the number of mixtures increased.  This is shown in Table 1. An eight mixture crossword model was selected, but the WER was still very for a closed loop experiment. 
	Mixtures
	WER

	1
	47.3

	2
	36.3

	4
	23.6

	8
	13.1


Table 1: Word error rate observed as a function of the number of mixtures used to train the HMMs.
Significant improvement in WER was observed by adjusting the state-tying parameters. State-tying parameters are used to tie the states while moving from monophone models to cross-word models. From the training data the most frequently occurring states are statistically learned. Some thresholds are used to prune away less frequently occurring states. As shown in Table 2, it was observed that the WER drops considerably as the number of states were increased. By increasing the number of states, the model becomes biased towards the training data. This was a good option since the main goal was to decrease the WER on the closed loop data so that accurate time marks could be obtained from the decoded data. 
Experiments were also conducted on unseen data. About 10% of the data was separated as a test set and a 10 slice cross-validation was performed on the data. In other words the data was split into 10 sections, and training and testing was done on these sets. One of the set was selected as the test set and the rest were training sets. The word-error rate was around 10-14% on the cross-validation experiments. 
For unseen data, the model should be more generalized following the Occam’s razor principle. Hence, simply increasing the number of states was not a good option for unseen data set.
The above 2 sentences do not seem to be supported by any other information. i.e why is what you say so ?
	Split threshold
	Merge threshold
	Occupancy threshold
	No. of states
	WER

	650
	650
	1400
	20
	11.3

	165
	165
	840
	37
	8.5

	150
	150
	900
	34
	8.4

	125
	125
	750
	41
	5.7

	110
	110
	660
	47
	4.8

	100
	100
	600
	56
	3.8

	75
	75
	550
	57
	3.6

	50
	50
	500
	58
	4.0

	25
	25
	450
	62
	3.0

	10
	10
	250
	94
	1.1

	10
	10
	100
	118
	0.5

	10
	10
	50
	126
	0.1

	0
	0
	0
	133
	1.1


Table 2: Effect of state-tying parameters on the word error rate.
III. CONCLUSIONS
TO BE DONE
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