7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <



Predicting Search Words Performance for Spoken Term Detection Systems
First A. Author, Second B. Author, Jr., and Third C. Author, Member, IEEE
Abstract— Spoken term detection (STD) is an extension of text-based searching that allows users to type keywords and search audio files containing recordings of spoken language. Performance is dependent on many external factors such as the acoustic channel, the language and the confusability of the search term. Unlike text-based searches, the quality of the search term plays a significant role in the overall perception of the usability of the system. In this paper, we present a system that predicts the strength of a search term from its spelling and its acoustical representations that is based on an analysis of spoken term detection output from a spoken term detection system designed by BBN technologies. We show that approximately 58% of the variance (correlation 76%) can be explained from the search term, but that a significant amount of the confusability is due to other acoustic modeling issues. 
Index Terms— spoken term detection, voice keyword search, information retrieval
I. INTRODUCTION

SEARCH engines have been used extensively to retrieve information from text files. Unlike searching text data, searching through speech is approximated and is typically based on some kind of score computed from some sort of pattern recognition system. For text based search systems, the performance of the system is independent of term being searched (at least for language like English where words are explicitly separated using space.), however this is not true for speech search engines. The performance of such systems is depended on many external factors like acoustic channel, speech rate, accent, language, and confusability of search terms. In this paper, our goal is to develop algorithms to predict the performance of a search term.
Our general approach has been to analyze error patterns produced by existing keyword search systems and to develop a predictive model of these errors. The basic data for this work is provided by BBN technologies and includes the result of running their system over more than 2300 hours of Fisher data set.
Several machine learning approaches has been investigated to build a good predictor of the error rate. One approach is based on acoustical distance among words. The intuition is that acoustically similar words should have the same average error rate against a recognizer. Another approach is based on phonetic distance between different words. Finally several, predictors based on linear regression, feed-forward neural networks and random forest which are fed with some features extracted from words are investigated.  These later machines show the best performance among the three different approaches that we considered while the phonetic based approach shows the worse performance.   Figure??? shows the general procedure that we used.

It has been found out that different approaches predict the error rate in different ways; as a result we can combine their predictions to have a better prediction of the error rate. We have used a simple linear machine to combine the output of individual predictors and to find the optimal weights we have used particle swarm optimization (PSO) algorithm. 
  
[image: image1]
II. Spoken term Detection 

The goal of a typical STD system [??] is “to rapidly detect 

the presence of a term in large audio corpus of heterogeneous speech material.” STD systems for practical reasons typically index the audio data as a preprocessing step, allowing users to rapidly search the index files using common information retrieval approaches. Indexing can be done using speech to text (STT) systems with phonetic acoustic models [??], or simpler engines based on phoneme recognition [?] [?]. The STT approach, which we will focus on in this paper, is summarized in Figure ??. 


STD like most detection tasks can be characterized in terms of two kinds of errors: false alarms and missed detections. The first type of error occurs when the system declares an occurrence falsely and the second type occurs when the system does not spot an actual occurrence. In practice, there is always a trade-off between these two kinds of errors and users can tune the system to work according to the application requirements. The overall error could be defined as a linear combination of these two terms. In this paper, we give equal weights to both factors.


[image: image2]
III. DATA

The data used in this project is provided by BBN technologies []. The data is obtained by running the recognizer using the Fisher 2300 hours training set as a test set. The recognizer was trained using 370 hours of switchboard data []  that excludes the Fisher data. The decoder worked 10 times faster than real time.  Raw data consists of hypothesis and reference files and corresponding lattices. In this project we are interested to extract error rate related to each word. This can be accomplished by comparing hypothesis and reference file using dynamic programming techniques. Alternatively, we can use sctk program provided by NIST []. However, since the file sizes are very large we finally decided to write our own scoring program to calculate error rates. We can also compute the average duration of each word using lattices provided with the data. This duration information is used to compare with result of our duration model that will be discussed later. 
A. Generating Evaluation and Training Subsets


In order to evaluate algorithms meaningfully we should have completely separate sets for training and evaluation. However, dividing the data into two parts and using one part for evaluation and one for training is a wasteful approach, especially by considering the fact that the amount of available data is limited. Another option is to use cross-validation. In this approach we divide the whole data set into N (in this case 10) subsections and at each step use one of these subsections as the evaluation set and other 9 subsets as training data. At each step we should train our models completely from scratch and using the corresponding training data. After completing this step for all 10 subsets we can concatenate the results to obtain the evaluation results for all data points. Statistics for training (MSE, correlation and R-Square) can be obtained by averaging these statistics for individual training set.  Because of the reasons that will be explained later (see section ???) each training subset divided into 10 subsets (dev sets) so we can calculate the prediction of each algorithm just over each training data set using a similar paradigm that we have used to calculate the prediction over the evaluation sets.   

Since data, for different algorithms, is different (for example for acoustic based method data is the representation vectors and for feature based method data is a collection of features.) , we first divide labels into 10 sections and then using this fixed labels divide the data for different algorithms.       
IV. Distance based Algorithms
One intuitive way to deduce the error rate associated to a word is to look at similar words and compute the error rate of the word in question by weighted averaging of the error rate of similar words. Depending on the criterion used to define the similarity, different algorithms can be obtained. In this section we introduce two algorithms respectively based on acoustic and phonetic distance criteria. 
A. Acoustic Based Distance Algorithm

In the acoustic based distance algorithm, the criterion is the Euclidian distance in the acoustic space.  In this algorithm we have used MFCC features and derivatives and acceleration components plus the duration to construct an acoustic space.
1) Data preparation

 Acoustic data can be extracted from various sources. In this project we have used Switch board (SWB) dataset [??]. 

First a list of words existed in our dataset is generated.  Then all instances of these words are spotted in the transcriptions and corresponding MFCC files. This step is possible because transcriptions at the word level are available.
Because different words and even different instances of the same word have different lengths and at the other hand, we want to generate vectors with equal length we use a procedure to convert all instances of all words into vectors with a predefined length.  Toward this we have used three approaches and correspondingly produced three sets of data. 

The first method is adopted from [???]. In this method each utterance is segmented into three sections with relative size of 3-4-3 and the average value is calculated in each segment; as a result we obtain a 3*39 =117 elements vector, after adding the log of the duration for that utterance we obtain a final vector with length 118. The second and third approaches are similar to the first approach; the only difference is the number of segments which are   10-24-32-24-10 and 10 equal segments respectively.


For each word there exist many instances. As a result algorithms like K-nearest neighbor (KNN) which scales linearly with the data size would be computationally complex. An alternative approach is to represent each word by just few samples (reprehensive vectors). Clustering using K-mean algorithm is used to generate several reprehensive vectors for each word.
2) Algorithm

The algorithm is a modified version of KNN algorithm. 
1. All representative vectors for a given word are retrieved.

2. All of these vectors are compared with all of the vectors in the database (which excludes the word under consideration.)

3. K nearest neighbors for each representative vector and their corresponding distances are retrieved.

4. Based on the distances, the best representative vector for the word under the question is selected.   
5. Weighted average of the error rates corresponding to all K selected   vectors is reported as the prediction for the error rate for the word in question.


In this algorithm K can be infinite which practically means all points in the database are used to calculate the prediction but their effect is inversely proportional to their Euclidean distances to the word in question. Equation ???  shows the predictor, where 
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B. Phonetic Based Distance Algorithm

The basic philosophy in this algorithm is the same as the previous one but we use a different type of similarity (or distance). In this case similarity is defined based on a phonetic distance measure. The distance is the “edit distance” [???] which simply is the number of insertion, deletion and substitutions needed to match two strings. Edit distance is calculated using dynamic programming technique.
1) Data preparation

A word can be converted into phonetic representation using a dictionary or using “letter-to-sounds” [???] and then saved along with its error rate in a file.
2) Algorithm
The algorithm is a modified version of KNN algorithm.

6. Phonetic representation of a given word is compared with all phonetic representation of all other words and their distance is calculated using dynamic programming and Edit distance.

7. K nearest neighbors of the given word and their corresponding distances are retrieved. 

8. Weighted average of the error rates corresponding to all K nearest neighbors is calculated and is reported as the prediction for the word in question.  

Similar to the previous algorithm K can be infinite which effectively means all points in the database are used to calculate the prediction but their effect is inversely proportional to their Edit distances to the word in question.  Equation ??? shows the prediction formula:
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C.   Results

Table ??? shows the result of acoustical based algorithm with different settings. The first column is corresponding to the method used to generate the fixed length vector representing a word.  The second column (lower case k) is the number of representative vectors (clusters) for each word. The third column (capital K) is the K for KNN algorithm. The next three columns are mean square error (MSE), correlation (R) and R-square (R2) over the training data and the last three columns are the same quantities over the evaluation data. 

As this table shows, the best result can be obtained using set 1 with 2 or 3 representative vectors and using all data points for the KNN algorithm. 

[image: image6]
 Table ???  shows the results for phonetic based algorithm. In this case the first column is the K for KNN algorithm and the other columns are the same as the pervious table. 

By comparing these results we can deduce that acoustic distance algorithms can predict a more accurate error rate for a given word. In other words, error rate is more related to the acoustic structure of a word than phonetic structure.



[image: image7]
V. Feature based algorithms

In the previous section, we introduced  two algorithms based on the regressing of the error rate using similar words in the database using two different criteria. In this section, a family of algorithms based on features extracted from words is introduced. These features then used as inputs of three machine learning algorithms that consists of  linear regression, neural network, regression tree and random forest.
A. Data Preparation

Features are generated from words. These features includes: duration, length, number of syllables, number of  syllables/length, number of consonants/ length, number of vowels/length, number of vowel/number of consonants, count, monophone freq., mono broad phonetic class (BPC) freq., mono CVC  freq., bi-phone freq., bi-BPC freq. ,bi-CVC freq., tri-CVC freq. We have used a simple phoneme based duration model [???] to estimate the duration. Figure ??? shows how error rate is correlated with the duration of the word.

Number of syllables can be inferred from a dictionary or alternatively using software similar to NIST syllabification [??].Consonants, vowels and their ratios can be deduced using phonetic representation of a word. Count is the number of times a word existed in the dataset. The reason that count has some information about the error rate can be explained by considering the fact that error rate is related to the number of instances of a word that recognizer is trained with. Because count is a relative measure we can infer it from an independent dataset or even using language modeling resources. However in the current work we have used BBN data to deduce the count.  BPC are broad phonetic classes as shown in Table ???.

CVC are consonant-vowel-consonants sequences. The frequency measures simply show the fraction of times each symbol (in N-gram sense) happened in a given word.   After generating these basic features and also after deleting all features that never occurred or occurred very rarely we run several feature selection algorithm that are discussed in the next section.

[image: image8]
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B. Feature Selection


Initial poll of features includes 150 members.  We have used sequential feature selection algorithm [] with different criterion to select relevant features.  Moreover, another feature subset has been generated using random forest []. All in all, 7 feature subsets are generated. Subsets 1 and 2 are generated using linear regression and using correlation and MSE respectively.  Subsets 3 and 4 are using neural networks and subsets 5 and 6 are generated using trees and bagging (10 trees).  Subset 7 is generated using random forest.  Table??? shows the number of features for each subset.

C. Algorithms
1) Linear Regression

Linear regression is among the simplest methods that can be used to model some observations. Equations ??? and  ??? shows the model and training respectively. Where we want to learn β and ε is the error term.
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2) Neural Network


Feed-forward networks are among the most efficient ways to model nonlinear relationship between the inputs and the output. In this case we simply try to estimate function [image: image14.png]


 in equation ???. In practice, [image: image16.png]


 is approximated as a weighed sum of some simple functions like logistic or sigmoid functions and the goal is to learn these weights.  The training can be accomplished using the famous back-propagation algorithm [??].
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3) Random Forest


Random forests can be built by growing many regression trees using a probabilistic scheme [???]. Basically, for each tree, we resample data cases with replacement and we also select [image: image19.png]


features randomly and then simply grow each tree to the largest extent without any pruning. The evaluation can be done simply by averaging the result of all trees. In order to decrease the error rate of the random forest, individual trees should not be highly correlated but at the other hand each tree should be a good predictor. Generally, random forests are more robust to over fitting.  Furthermore, as discussed before, they generate variable importance data that can be used in feature selection.


[image: image20]
D. Results
Table ??? shows the results for linear regression. In this table “feature set” is the result of different feature selection methods discussed earlier. It can be seen from this table that the best result is obtained for feature sets 1 and 2. Set 7 is also gave acceptable results. Using all features gives comparable results but computationally is more expensive.
Table ??? shows the result for feed-forward neural network. Again feature set 1 gives the best results. But it is important to notice that sets 3 to 7 also gave comparable results though the number of features in those cases is significantly lower. (55 for set 1, 14 for set 4 and 7 for set 5). 

Table ??? shows the result of random forest. In this case the best result is obtained using the full set of features. However sets 1, 2 and 7 gives comparable results with far less features. (150 for all features and 55 for set 1). Results for sets 3 to 4 are also in the acceptable range. 
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VI. Committee of experts
A. Particle Swarm Optimization (PSO)

So far we have seen that there are at least three different major approaches to predict the error rate of a word. It is also possible to find new approaches or features that can improve the prediction performance. In this section we explore an algorithm that linearly combines different machines in order to make a better predictor. The reason that this technique is helpful is because of the fact that predictions of different machines are not very highly correlated. Table ??? shows correlation among predictions of three typical machines. In this work we have used particle swarm optimization  [] (PSO) technique to find optimum weights for combining different machines together.  We have used several machines for each approach. Totally we have used 75 machines. 
In order to compute the optimal coefficient for each machine we have used only the training data. As it has been discussed earlier, data is divided into 10 folds and we train all machines 10 times for each subset from the scratch. Furthermore, at each step we divide the training data into train and development sets (another 10 folds.) and evaluate development set using the training data and cross validation so as a result we obtain a prediction result for development set per training set. In other words, for each of the ten folds of the original set we obtain a prediction result over the training set and a prediction result over the evaluation set. The prediction results over the training are used as input of PSO algorithm to find optimum coefficients.


[image: image24]
B. Algorithm

PSO has been first proposed by James Kennedy and Russell Eberhart [] , and is inspired from swarm of birds and school of fishes. Consider a swarm of N particles. We assume there is no leadership in the swarm and every particle can behave on its own. The goal of a swarm in the nature is to find the best food source in the space. In that case, each particle performs a local search in the space and moves from one place to another according to its own experiences and information shared by the swarm. If the search space is bounded, after some finite time the whole swarm should be concentrated around the best food source. In Particle Swarm Optimization, we have a very similar problem. In this case, the space is the D-dimensional space of parameters (parameter space), the food source is the optimum point of the function that we want to optimize, and each particle is a simple processor that can evaluate the target function. (The input to the target function is the position of the particle in the parameter space.). At the initialization step, each particle positioned randomly in the space. Particles start moving in a probabilistic  manner by considering their own best position and swarm’s best position. Eventually all particles will concentrate around the optimum point. 

In this work we have a linearly constrained problem in which we want to find optimum weights in such a way that they sum up to one. We have used  [] for this constrained optimization problem. 

The goal of the algorithm is to minimize 
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 are equal to one. The algorithm is as follow:

9. Set iteration t to zero and initialize the particles randomly within the search space. Because the search space is a probability space we can use Dirichlet distribution with concentration parameter equal to one to initialize particles. This will insure that all constrained are hold.  Equation ??? shows the definition of Dirichlet distribution. In this case all 
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10. Evaluate the performance of each particle.

11.  Compare the best performance of each particle 
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 to its current performance and update the best performance.

12. Set the global best 
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 to the position of the particle with best performance.

13. Change the velocity for each particle except for the global best particle according to equation ???.

14. For the global best particle update the velocity according to equation ???.

15. Move each particle according to equation ???.

16. Let t:=t+1

17. Check for convergence, if  the answer is no go  to step 2 

18. Report the position of the global best as the optimum solution.
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In these equations, 
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 is weight inertia, 
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C. Results
 ??? shows the result of our approach for combining all machines. The first row shows the result of all machines (75) in which 27 machines are acoustic based distance machines (different parameters or input types.), 8 machines are phonetic based and 40 machines are feature based. The last three columns show the percent of each type of machines contribution for the final prediction. As it can be seen from these numbers, feature based machines have more contribution due to their better performance and phonetic based machines have the least contribution. It is interesting to know that 43 (57.33%) machines have zero contribution.  Rows two and three are corresponding to cases that we forced linear regression machine and linear regression and trees to have zero coefficients. As it can be seen the results are almost the same though excluding linear machines improve the results slightly.  The best R-Square that can be obtained with this approach is 58.1 % which shows 16% improvement relative to the best result that can be obtained using individual machines. Figure ??? shows the predicted error rate versus reference error rate for all words and for the second row of  table ??? .Particularly from this figure we can see the predictions are practically useful.
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VII. Discussion and future direction 
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Figure � SEQ Figure \* ARABIC �1�- An overview of our approach to search term strength prediction that is based on decomposing terms into features.
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Figure � SEQ Figure \* ARABIC �2�- An overview of a common approach to voice keyword search that uses an STT system to perform indexing []
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Figure � SEQ Figure \* ARABIC �3�- The relationship between duration and error rate shows that longer words generally result in better performance.
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[image: image51.emf] set  k  K  MSE(train)  R(train)  R2(train)  MSE(eval)   R(eval)   R2(eval) 

1 1 1 0.027 0.227 0.052 0.027 0.27 0.073

1 1 3 0.025 0.34 0.116 0.025 0.37 0.137

1 1 5 0.024 0.394 0.156 0.023 0.425 0.181

1 1 30 0.021 0.528 0.279 0.02 0.543 0.296

1 1  inf  0.023 0.456 0.208 0.022 0.471 0.222

1 2 1 0.026 0.293 0.087 0.025 0.33 0.109

1 2 3 0.024 0.414 0.173 0.023 0.444 0.198

1 2 5 0.022 0.461 0.214 0.022 0.473 0.224

1 2 30 0.019 0.569 0.325 0.019 0.583 0.34

1 2  inf  0.018 0.601 0.361 0.018 0.615 0.378

1 3 5 0.022 0.475 0.226 0.022 0.497 0.247

1 3 30 0.019 0.565 0.32 0.019 0.579 0.336

1 3  inf  0.018 0.6 0.36 0.018 0.614 0.378

1 4 5 0.022 0.477 0.229 0.021 0.499 0.249

1 4 30 0.02 0.542 0.294 0.02 0.559 0.313

1 4  inf  0.019 0.578 0.334 0.018 0.595 0.355

1 12 5 0.024 0.397 0.159 0.023 0.432 0.187

1 12 30 0.021 0.503 0.254 0.021 0.52 0.271

1 12  inf  0.021 0.519 0.27 0.02 0.542 0.294

2 2 5 0.024 0.387 0.151 0.024 0.407 0.166

2 4  inf  0.02 0.55 0.303 0.019 0.568 0.323

2 15  inf  0.021 0.526 0.277 0.02 0.551 0.303

2 17  inf  0.021 0.526 0.277 0.02 0.551 0.303

3 2  inf  0.022 0.478 0.229 0.022 0.495 0.246

3 2  inf  0.022 0.478 0.229 0.022 0.495 0.246

3 12  inf  0.021 0.514 0.264 0.02 0.543 0.295

3 17  inf  0.021 0.514 0.264 0.02 0.543 0.295

[image: image52.emf]K   MSE(train)  R(train)  R2(train)  MSE(eval)  R(eval)   R2(eval) 

1 0.026 0.296 0.088 0.026 0.322 0.104

3 0.024 0.405 0.165 0.024 0.421 0.178

5 0.023 0.434 0.189 0.023 0.451 0.204

30 0.021 0.502 0.252 0.021 0.519 0.27

50 0.021 0.503 0.254 0.021 0.519 0.27

100 0.021 0.499 0.25 0.021 0.515 0.266

300 0.022 0.483 0.234 0.022 0.498 0.249

 inf  0.023 0.459 0.211 0.022 0.478 0.229
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[image: image54.emf]Stops b p d t g k
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[image: image55.emf]Method

Number of 

features

All features 150

method 1 55

method 2 54

method 3 12

method 4 14

method 5 7

method 6 7

method 7 56

[image: image56.emf]feature MSE(train)R(train)R2(train)MSE(eval)R(eval)R2(eval)

All 0.015 0.683 0.467 0.018 0.62 0.38

set1 0.016 0.654 0.428 0.017 0.63 0.4

set2 0.016 0.654 0.428 0.017 0.63 0.4

set3 0.019 0.571 0.326 0.019 0.57 0.33

set4 0.019 0.573 0.329 0.019 0.57 0.33

set5 0.02 0.561 0.315 0.02 0.56 0.32

set6 0.02 0.561 0.315 0.02 0.56 0.32

set7 0.017 0.635 0.403 0.018 0.6 0.37

[image: image57.emf]feature MSE(train)R(train)R2(train)MSE(eval)R(eval)R2(eval)

All 0.014 0.72 0.526 0.017 0.6 0.389

set1 0.012 0.75 0.568 0.015 0.7 0.479

set2 0.013 0.74 0.541 0.015 0.7 0.47

set3 0.015 0.7 0.486 0.015 0.7 0.477

set4 0.015 0.7 0.486 0.015 0.7 0.475

set5 0.016 0.67 0.455 0.016 0.7 0.448

set6 0.016 0.67 0.455 0.016 0.7 0.448

set7 0.013 0.73 0.54 0.016 0.7 0.455

[image: image58.emf]feature MSE(train)R(train)R2(train)MSE(eval)R(eval)R2(eval)

All 0.006 0.9 0.801 0.014 0.7 0.5

set1 0.007 0.88 0.766 0.015 0.7 0.49

set2 0.008 0.86 0.734 0.015 0.7 0.49

set3 0.011 0.78 0.602 0.016 0.7 0.46

set4 0.01 0.8 0.638 0.015 0.7 0.46

set5 0.012 0.76 0.58 0.016 0.7 0.44

set6 0.012 0.76 0.58 0.016 0.7 0.44

set7 0.006 0.88 0.779 0.014 0.7 0.49

[image: image59.emf]AB PB FB

AB 1 0.4 0.6

PB 0.4 1 0.7

FB 0.6 0.7 1

[image: image60.emf]Input MachinesMSE (trian)

R 

(train)

R2 

(trian)

MSE 

(eval)

R (eval)

R2 

(eval)

Ac% Ph% Feat%

all

9.16E-040.913 0.83 0.012 0.76 0.5841.1%10.5%48.3%

exclude linear

8.40E-040.918 0.84 0.0120.762 0.5844.7%15.7%39.5%

exclude 

linear/tree

9.11E-04 0.91 0.83 0.0120.761 0.5845.2%18.2%36.5%
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Sheet1

		 set		 k		 K		 MSE(train) 		 R(train) 		 R2(train) 		 MSE(eval) 		 R(eval) 		 R2(eval) 

		1		1		1		0.027		0.227		0.052		0.027		0.27		0.073

		1		1		3		0.025		0.34		0.116		0.025		0.37		0.137

		1		1		5		0.024		0.394		0.156		0.023		0.425		0.181

		1		1		30		0.021		0.528		0.279		0.02		0.543		0.296

		1		1		 inf 		0.023		0.456		0.208		0.022		0.471		0.222

		1		2		1		0.026		0.293		0.087		0.025		0.33		0.109

		1		2		3		0.024		0.414		0.173		0.023		0.444		0.198

		1		2		5		0.022		0.461		0.214		0.022		0.473		0.224

		1		2		30		0.019		0.569		0.325		0.019		0.583		0.34

		1		2		 inf 		0.018		0.601		0.361		0.018		0.615		0.378

		1		3		5		0.022		0.475		0.226		0.022		0.497		0.247

		1		3		30		0.019		0.565		0.32		0.019		0.579		0.336

		1		3		 inf 		0.018		0.6		0.36		0.018		0.614		0.378

		1		4		5		0.022		0.477		0.229		0.021		0.499		0.249

		1		4		30		0.02		0.542		0.294		0.02		0.559		0.313

		1		4		 inf 		0.019		0.578		0.334		0.018		0.595		0.355

		1		12		5		0.024		0.397		0.159		0.023		0.432		0.187

		1		12		30		0.021		0.503		0.254		0.021		0.52		0.271

		1		12		 inf 		0.021		0.519		0.27		0.02		0.542		0.294

		2		2		5		0.024		0.387		0.151		0.024		0.407		0.166

		2		4		 inf 		0.02		0.55		0.303		0.019		0.568		0.323

		2		15		 inf 		0.021		0.526		0.277		0.02		0.551		0.303

		2		17		 inf 		0.021		0.526		0.277		0.02		0.551		0.303

		3		2		 inf 		0.022		0.478		0.229		0.022		0.495		0.246

		3		2		 inf 		0.022		0.478		0.229		0.022		0.495		0.246

		3		12		 inf 		0.021		0.514		0.264		0.02		0.543		0.295

		3		17		 inf 		0.021		0.514		0.264		0.02		0.543		0.295


















Sheet1

		Machine		feature 		MSE(train)		R(train)		R2(train)		MSE(eval)		R(eval)		R2(eval)

		1		All		0.014		0.724		0.526		0.017		0.624		0.389

		2		set1		0.012		0.753		0.568		0.015		0.692		0.479

		3		set2		0.013		0.735		0.541		0.015		0.686		0.47

		4		set3		0.015		0.697		0.486		0.015		0.691		0.477

		5		set4		0.015		0.697		0.486		0.015		0.689		0.475

		6		set5		0.016		0.674		0.455		0.016		0.669		0.448

		7		set6		0.016		0.674		0.455		0.016		0.669		0.448

		8		set7		0.013		0.734		0.54		0.016		0.675		0.455

		9*		All		0.017		0.742		0.551		0.016		0.67		0.45

		10*		set1		0.016		0.752		0.566		0.014		0.705		0.497
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Sheet1

				AB		PB		FB

		AB		1		0.4		0.6

		PB		0.4		1		0.7

		FB		0.6		0.7		1






Sheet1

		Input Machines		MSE (trian)		R (train)		R2 (trian)		MSE (eval)		R (eval)		R2 (eval)		Ac%		Ph%		Feat%

		all		9.16E-04		0.913		0.834		0.012		0.76		0.578		41.1%		10.5%		48.3%

		exclude linear		8.40E-04		0.918		0.843		0.012		0.762		0.581		44.7%		15.7%		39.5%

		exclude linear/tree		9.11E-04		0.91		0.829		0.012		0.761		0.579		45.2%		18.2%		36.5%






Sheet1

		Machine		feature 		MSE(train)		R(train)		R2(train)		MSE(eval)		R(eval)		R2(eval)

		1		All		0.006		0.895		0.801		0.014		0.708		0.501

		2		set1		0.007		0.875		0.766		0.015		0.701		0.492

		3		set2		0.008		0.857		0.734		0.015		0.697		0.486

		4		set3		0.011		0.776		0.602		0.016		0.676		0.458

		5		set4		0.01		0.799		0.638		0.015		0.679		0.461

		6		set5		0.012		0.761		0.58		0.016		0.659		0.435

		7		set6		0.012		0.761		0.58		0.016		0.659		0.435

		8		set7		0.006		0.882		0.779		0.014		0.703		0.494

		9*		All		0.007		0.905		0.82		0.014		0.71		0.504

		10*		set1		0.008		0.886		0.786		0.015		0.701		0.492






Sheet1

		K 		 MSE(train) 		 R(train) 		 R2(train) 		 MSE(eval) 		 R(eval) 		 R2(eval) 

		1		0.026		0.296		0.088		0.026		0.322		0.104

		3		0.024		0.405		0.165		0.024		0.421		0.178

		5		0.023		0.434		0.189		0.023		0.451		0.204

		30		0.021		0.502		0.252		0.021		0.519		0.27

		50		0.021		0.503		0.254		0.021		0.519		0.27

		100		0.021		0.499		0.25		0.021		0.515		0.266

		300		0.022		0.483		0.234		0.022		0.498		0.249

		 inf 		0.023		0.459		0.211		0.022		0.478		0.229






Sheet1

		Machine		feature 		MSE(train)		R(train)		R2(train)		MSE(eval)		R(eval)		R2(eval)

		1		All		0.015		0.683		0.467		0.018		0.618		0.383

		2		set1		0.016		0.654		0.428		0.017		0.629		0.396

		3		set2		0.016		0.654		0.428		0.017		0.629		0.395

		4		set3		0.019		0.571		0.326		0.019		0.573		0.328

		5		set4		0.019		0.573		0.329		0.019		0.574		0.329

		6		set5		0.02		0.561		0.315		0.02		0.564		0.318

		7		set6		0.02		0.561		0.315		0.02		0.564		0.318

		8		set7		0.017		0.635		0.403		0.018		0.604		0.365






Sheet1

		Method		Number of features

		All features		150

		method 1		55

		method 2		54

		method 3		12

		method 4		14

		method 5		7

		method 6		7

		method 7		56
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