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“Epilepsy is a neurological disorder that causes
a sudden and repeated rush of electrical
activity in the brain known as seizures.”
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Why is it important?

Are diagnosed with epilepsy Person will be diagnosed of people worldwide
with epilepsy at some point will have one seizure
in their life . during their lifetime



Enhancing Seizure detection using ML

Was the event a seizure or something that looks
like a seizure?

(Migraine headaches, muscle cramps, and sleep
disturbances ... etc)

Which models, and settings is best to detect
seizures in imbalanced datasets?
The visual analysis of EEG recordings is a time-

consuming and error-prone procedure

Value of EEG
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ML in seizure detection
In some of the work the authors

used deep learning approach
and scored 100% none the less
the performance would vary
sharply from one dataset to the
other, that doesn’t guarantee
that the model can be
generalized and can perform
well in deployment stage.
Furthermore, the sensitivity in
this approach scored 100%
however the amount of
improvement comparing to
other approaches included in
the experiment is low. Others
used classical ML algorithm
such as SVM, DT, and KNN and
a manual feature extraction to
predict seizure

EXISTING WORK

ML in imbalanced datasets
Researchers showed SVM s

imbalanced datasets and worked on improving

sensitive to

its accuracy using hybrid techniques however
the sensitivity in these algorithms fluctuated
sharply from one dataset to the other and
traditional sampling  techniques would
outperform them in other. This could mean that
handling imbalanced

dataset differs from one domain to the other

the best solution for

and from one dataset to the other

Dealing with imbalanced medical datasets
Researchers have developed sampling and
algorithmic  solutions to deal with
imbalanced datasets however the algorithms
either would not be able to outperform
other approaches such in certain datasets,
other researchers developed a combination
of sampling with an algorithm such as Naive
Bayes to handle the imbalance problem
nonetheless the amount of improvement is
very little, other experimented on traditional
approaches such as SMOTE, under and over
sampling or combination of these methods
however they don’t consider the loss in data
or the drop in data quality



Targeting the population of interest

Class distribution in the dataset Class distribution in the dataset after relabelling
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Data Distribution in Training and Testing Sets

3000
6000
2500
5000
2000
4000
1500
3000
1000
2000
500
- -
0 I
0
0 1 0 1

Training (left) and testing (right) sets before ratio balancing.
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ML System perform better on balanced datasets

«Haixiang G, Yijing L, Shang |, et a/ Learning from class-imbalanced data: review of
methods and applications. Expert Syst Appl 2017,73:220-

39.doi:10.1016/j.eswa.2016.12.035

Unbalanced data may be rebalanced, and without
correction the resulting system tends to over-
estimate the rare event.

*Lawrence CSS,Storkey AJ. When Training and Test Sets are Different: Characterising
Learning Transfer. In: Lawrence CSS, ed. Dataset shift in machine learning. MIT

Press, 2013: 3-28.



Dummy & Baseline model

Approach Accuracy Precision Recall

Dummy Classifier 0.69 0.12 0.15 0.24 0.49

BRR on original

0.8 0.9 0.04 0.02 0.5
data

Performance of dummy classifier vs. baseline model
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Extracting Statistical Features
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Target Statistics | p-value
Mean 4.761 0.029

peviation | 225%8| 0
Max 5025.22 0
Min 5152.842 0
Max-Min | 5269.803 0
Q1 4374.825 0
Median 17.76 0
Q3 4004.397 0

Kruskal Walli test




Resolving possible source of data leakage

LR on raw data LR on data-leakage-aware data

Performance after addressing data leakage

Spot every seizure
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Performance of models with different orderings.

BRR on data after feature extraction then resampling BRR on data after resampling then feature extraction
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BRR after preprocessing
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8 Dr. Khalid Abdul

neurologist

Al4Epilepsy

A tool that utalizes Al in detecting epileptic seizures in EEGC recordings
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Note

hocuracy Score : 0.79768115542028398
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A Day in the Life of
Someone with Epilepsy

https://brainsandbodiesblog.com/2017/10/08/a-
day-in-the-life-of-someone-with-epilepsy/

DEEP
MEDICINE

e

i
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https://www.amazon.com/Deep-Medicine-Artificial-
Intelligence-Healthcare-ebook/dp/BO7FMHFGLT
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