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How do we balance the benefits 
of AI with the risks?



Responsible AI:
• Application of ethics to AI development
• Development of AI models that benefit 

humanity

Explainable AI:
• Tools to make AI models more transparent 

and interpretable to developers and end 
users

Responsibility requires 
explainability

Responsible 
AI

Explainable AI



DEEP DIVE: RESPONSIBLE AI



Why does responsible AI matter?
• If medical, surgical, or other healthcare AI systems fail, significant harm 
can be caused – up to and including loss of life

• AIs can learn from biased data
• Example: AI diagnosis systems can fail to diagnose conditions in minority groups 
due to historical underrepresentation in medical data [1]

• AIs can share outdated, misleading, incorrect, or harmful information
•Example: ChatGPT has been shown to give inadequate information about medical 
conditions [2] and misleading information about mental health disorders [3]

•Example: AI chatbots can respond inappropriately to mental health crises [4, 5]
[1] I. Straw, “The automation of bias in medical Artificial Intelligence (AI): Decoding the past to create a better future,” Artif. Intell. Med., vol. 110, p. 101965, 2020
[2] E. A. M. van Dis et al. “ChatGPT: five priorities for research,” Nature, vol. 614, no. 7947, pp. 224–226, 2023
[3] Y. H. Yeo et al., “Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma,” Clin. Mol. Hepatol., vol. 29, no. 3, pp. 721–732, 2023
[4] L. Martinengo et al., “Evaluation of chatbot-delivered interventions for self-management of depression: Content analysis,” J. Affect. Disord., vol. 319, pp. 598–607, 2022 
[5] L. Laestadius et al., “Too human and not human enough: A grounded theory analysis of mental health harms from emotional dependence on the social chatbot Replika,” New Media Soc., Dec. 2022



Why do we need responsible AI?

• We want AIs that act to benefit people, environments, and 
societies

• Medical AIs, like medical doctors, should strive to “do no harm”



• Industry frameworks include:
• Meta: https://ai.meta.com/responsible-ai/
• Microsoft: https://www.microsoft.com/en-us/ai/principles-and-approach
• Amazon: https://aws.amazon.com/machine-learning/responsible-ai/
• OpenAI: https://openai.com/safety (and hyperlinks within this page)
• Google: https://ai.google/responsibility/responsible-ai-practices/
• Intel: https://www.intel.com/content/www/us/en/artificial-intelligence/responsible-ai.html
• IBM: https://www.ibm.com/impact/ai-ethics

•Government agency frameworks/policies include:
• Department of Industry, Science and Resources (Australia): https://www.industry.gov.au/

publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
• India AI: https://indiaai.gov.in/responsible-ai/homepage
• National Institute of Standards and Technology (United States): https://www.nist.gov/trustworthy-and-

responsible-ai
     

What is responsible AI?
• It depends who you ask! There are many differing frameworks and guidelines.

https://ai.meta.com/responsible-ai/
https://www.microsoft.com/en-us/ai/principles-and-approach
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https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://indiaai.gov.in/responsible-ai/homepage
https://www.nist.gov/trustworthy-and-responsible-ai
https://www.nist.gov/trustworthy-and-responsible-ai


What is responsible AI?

• All of the frameworks, policies, etc. have a few things in common

• They all seek to provide a set of principles or guidelines focused on how 
responsible AI models should be developed, deployed, and used in order 
to meet ethical (and sometimes legal) standards.

• Responsible AI is sometimes used interchangeably with “fair AI”, “ethical AI”, 
“trustworthy AI”, etc. – but the literature shows that responsible AI should be 
all of these things and more.
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Responsible AI principle #1: 
Privacy
• AIs must preserve the privacy of data used in development; AI should not 
reveal sensitive data through reverse engineering or malicious attacks.

• All government and academic sources agree that privacy is essential.

• Most industry bodies have put some thought towards privacy.

• Data security and data protection are often mentioned alongside privacy.



Responsible AI principle #2: 
Robustness
• AI models should be resilient against failure and malicious attacks and 
operate as intended across all use cases.

• Almost all sources consider robustness or a related phrase such as reliability 
or resilience.



Responsible AI principle #3: 
Transparency
• AI models should be able to describe or explain their decisions in a way that 
is meaningful to stakeholders, from developers to end-users.

• Strongly tied to explainability and the field of explainable AI.

• Almost all sources agree that transparency is essential.



Responsible AI principle #4: 
Fairness
• AI models should be inclusive, treat people and scenarios fairly, and not 
discriminate.

• All sources agree that fairness is important.

• Some sources also mention diversity and/or inclusion, either as part of 
fairness or as an additional principle.



Responsible AI principle #5: 
Accountability
• AI models should be able to justify their decisions to the satisfaction of 
stakeholders from non-technical users to governing bodies. 

• AI models should have mechanisms for stakeholders to question, refute, or 
give feedback on AI decisions, with processes for timely resolution.

• Accountability is considered by all sources.

• Disagreement on who should be held accountable: the AI or the developers?

• Several sources identified that transparency supports accountability.



Responsible AI principle #6: 
Safety
• AI models should not cause harm to people, environments, or societies.

• Discussed by all academic and government sources, and most industry sources.

• Several sources group safety with concepts such as robustness and reliability.



Six principles of responsibility

1. Privacy

2. Robustness

3. Transparency

4. Fairness

5. Accountability

6. Safety

• Which principles do you think are the most important?

• Are there any other principles that you think are important 
to responsible AI?

• Are there any principles I’ve grouped together that you 
would consider separate?

• Tell me using this link or the QR code (to be provided 
during live talk)



Responsible
AI

Explainable
AI



DEEP DIVE: EXPLAINABLE AI



Explainable AI (XAI)

• AI models have become increasingly complex, making each decision difficult to 
understand

Inception v3 architecture. Source: Google Cloud, “Advanced guide to Inception v3,” 2023. 
https://cloud.google.com/tpu/docs/inception-v3-advanced (accessed Nov. 20, 2023).



Explainable AI (XAI)

• AI models have become increasingly complex, making each decision difficult to 
understand

• XAI focuses on making models and their decisions interpretable to users, developers, 
and other stakeholders

• The level of explanation required will vary depending on the stakeholders and the 
application

• Two types of XAI: Explainable by design, and post-hoc explanations



Explainable by design

• Many early “AI” models are explainable due their simplicity; their design and 
decision mechanisms can easily be inspected and understood.

• Examples: linear regression, logistic regression, decision trees, clustering, k-nearest 
neighbour, etc.



Explainable by design: line fitting 
approaches
• Line fitting approaches can be easily 
interpreted by inspecting the data and the line.

• Some mechanisms for generating lines are more 
straightforward than others.

• New predictions can be readily explained by 
showing the new prediction along the line.

Linear regression (above) and generalized 
additive models (below)



Explainable by design: decision 
trees
• Decisions follow a logical path 
that can be viewed and readily 
interpreted.

• Approaches that utilise multiple 
decision trees are more common in 
the literature (e.g. random forest).

• Interpretability decreases as 
more trees are added.



Explainable by design: clustering 
approaches
• Clustering approaches can be easily visualised by inspecting data and clusters.

• Some methods of generating clusters are more interpretable than others.

• New predictions can be readily interpreted by showing the new prediction in the 
cluster.



Explainable by design: k-nearest 
neighbours
• Prediction for a new data point is based on the 
value of the k-nearest neighbours

• Easy to visualise for small values of k, becomes 
more cluttered as k increases



Explainable by design

• Simplicity is good for interpretability.

• But there’s a reason these models aren’t seen much in modern literature – their 
simplicity often fails to capture complex features.



Post-hoc explainability

• Methods for explaining models and decisions after they are made.

• Useful for complex models that are difficult to visualise.

• Local post-hoc explanations seek to explain individual predictions.

• Global post-hoc explanations seek to explain the overall workings of the model.

• Quite a few different methods, we’ll explore just a few.



Post-hoc explainability: feature 
importance approaches (global)
• How can it help your research? Biomarker discovery, improve your model by 
revealing issues, explain your results to users.

• Several methods have been proposed in the literature to rank the importance of 
features to a model.

• Methods include permutation importance, SHapley Additive exPlanations (SHAP), 
individual conditional expectation (ICE) plots, and more.



Post-hoc explainability: feature 
importance approaches (global)
SHAP [1]

• Game-theory approach that quantifies the impact that 
each feature (‘player’) has on the models’ predictions 
(‘games’).

• SHAP values are calculated for an individual prediction; 
positive values push the output higher, negative values 
push the output lower.

• Global SHAP is calculated by aggregating results for 
all (or a subset of) the individual predictions.

•Can be applied to any model.

Figure Source: S. Baker, et al., “Hybridized neural networks 
for non-invasive and continuous mortality risk assessment in 
neonates,” Comput. Biol. Med., vol. 134, p. 104521, 2021.

[1] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting 
model predictions,” Adv. Neural Inf. Process. Syst., vol. 30, 2017.



Post-hoc explainability: feature 
importance approaches (global)
ICE & PDP plots

• Both types of plot look to evaluate the impact of 
changing a single feature on the models’ predictions.

• Individual conditional exception (ICE) plots show the 
impact of changing a feature on each individual 
prediction in the dataset.

• Partial dependence plots (PDP) show the overall 
impact of changing a feature on the model, by 
averaging the ICE plots.

• Can be applied to any model.



Post-hoc explainability: feature 
importance approaches (global)
Permutation importance

• After model training, all values for a particular feature are shuffled to assess the 
impact of a given feature on predictions.

• Features that have the most impact on predictions will have the highest permutation 
importances. 

• Can be applied to any model.

Feature Weight

Gestational Age +0.541

Most recent heart rate +0.335

… …

Sex +0.029



Post-hoc explainability: feature 
importance approaches (local)
• How can it help your research? Analyse predictions that your model got wrong, 
explain your model to end users.

• Many out there, SHAP and Local Interpretable Model-Agnostic Explanations (LIME) 
are perhaps the most popular.



Post-hoc explainability: feature 
importance approaches (local)
SHAP (again)

• SHAP values are calculated for an individual prediction; positive values push the output 
higher, negative values push the output lower.

• Can be applied to any model.

Figure Source: S. Baker, et al., “Hybridized neural networks for non-invasive and continuous mortality risk 
assessment in neonates,” Comput. Biol. Med., vol. 134, p. 104521, 2021.



Post-hoc explainability: feature 
importance approaches (local)
LIME [1]

• Develops a local explanation by giving the 
model slight pertubations of the actual data 
sample to evaluate how the model’s prediction 
will change

• A local linear model is fit to the predictions 
on perturbed data, with weights for each 
feature of this linear model then inspected to 
get the LIME values 

survival mortality

[1] M. T. Ribeiro, et al., “‘Why should I trust you?’ Explaining the 
predictions of any classifier,” in Proceedings of the 22nd ACM 
SIGKDD, 2016, pp. 1135–1144.



Post-hoc explainability: explaining 
images and waveforms (local)
• How can it help your research? Analyse predictions that your model got wrong, 
explain your model to end users.

• Heatmapping approaches including class activation mapping (CAM) and its variants 
are popular in this are.

• SHAP and LIME can be applied to explaining images, but not broadly used.



Post-hoc explainability: explaining 
images and waveforms (local)
CAM and variants

• Early version of CAM applies global average pooling on CNN feature maps before the 
output layer.

• Other variants take different approaches to weighting the convolutional feature maps, but 
most focus on the layer before reduction to an output.

Source: A. Hamza et al., “COVID-19 classification using chest X-ray 
images based on fusion-assisted deep Bayesian optimization and Grad-

CAM visualization ,” Frontiers in Public Health , vol. 10. 2022.

Source: R. R. Selvaraju, et al., “Grad-CAM: Visual explanations 
from deep networks via gradient-based localization,” in 

Proceedings of the IEEE ICCV, 2017, pp. 618–626.



Post-hoc explainability: explaining 
images and waveforms (local)
CAM and variants

• Recent papers have also applied CAM-
based approaches to biomedical waveform 
data.

T. Rahman et al., “COV-ECGNET: COVID-19 detection using ECG trace images with 
deep convolutional neural network,” Heal. Inf. Sci. Syst., vol. 10, no. 1, p. 1, 2022.



Post-hoc explainability: explaining 
images and waveforms (local)
SHAP and LIME

• Both LIME and SHAP can be used to explain how a model classified an image

• More literature seems to use LIME, likely because it’s more computationally efficient

• Neither of these approaches have been broadly explored for waveform data

M. T. Ribeiro, et al., “‘Why should I trust you?’ Explaining the predictions of any classifier,” 
in Proceedings of the 22nd ACM SIGKDD, 2016, pp. 1135–1144.

S. M. Lundberg and S.-I. Lee, “SHAP,” 2023. 
https://github.com/shap/shap (accessed Nov. 20, 2023).



Post-hoc explainability: explaining 
text (local)
• Relatively few works have 
looked at explaining text 
classification.

• SHAP has been used to rank 
word importances for 
classifying misinformation [1]

• Heatmapping has been used 
to highlight words for 
sentiment analysis [2]

• Open research challenge.

Explaining classification of text statements as true or false for the statement “Consuming 
alcoholic beverages may help reduce the risk of infection by the novel coronavirus”. Source: [1]

[1] J. Ayoub et al., “Combat COVID-19 Infodemic Using Explainable Natural 
Language Processing Models,” arXiv, 2021.

[2] H. Chefer et al., “Transformer Interpretability Beyond Attention Visualization,” in 
2021 IEEE/CVF CVPR, 2021, pp. 782–791.



Explainability continued…

• Many more methods than the ones shown here.

• Several major open research questions:
• How to explain generated content?
• How do we know if explanations are truly interpretable?
• How can we compare two different explainability approaches?

?



EXPLAINABILITY FOR RESPONSIBILITY



Explainability for responsibility

• XAI can support responsibility across all characteristics – but research is in early days

Privacy Robustness Transparency

Fairness Accountability Safety



Explainability for privacy

• Explainability is often considered to be a privacy risk.

• Explanations need to work alongside data protection to preserve 
privacy without making models harder to interpret.

• Heatmapping approaches work effectively in models that have 
been trained using privacy-preserving federated or swarm 
learning [1, 2].

• SHAP is minimally affected when differential privacy is used to 
anonymise training data [3].

• Explainability supports privacy indirectly – it enables privacy to 
be implemented without compromising other responsibility 
characteristics.

[1] A. Raza et al., “Designing ECG monitoring healthcare system with federated transfer learning and explainable AI,” Knowledge-Based Syst., vol. 236, p. 107763, 2022.
[2] O. L. Saldanha et al., “Swarm learning for decentralized artificial intelligence in cancer histopathology,” Nat. Med., vol. 28, no. 6, pp. 1232–1239, 2022.
[3] A. Bozorgpanah et al., “Privacy and Explainability: The Effects of Data Protection on Shapley Values,” Technologies, vol. 10, no. 6. 2022.



Explainability for robustness

• Explainability supports testing for consistency and 
resilience against attacks.

• Inspecting individual explanations can reveal 
issues with consistency, and metrics have been 
proposed which use explainability to quantify 
robustness [1].

• Some research has suggested that robust models 
have more interpretable salience maps [2].

[1] S. Sharma et al., “CERTIFAI: A Common Framework to Provide Explanations and Analyse the Fairness and Robustness of Black-box Models,” in AAAI/ACM AIES ’20, 2020, pp. 166–172
[2] A. Noack et al., “An Empirical Study on the Relation Between Network Interpretability and Adversarial Robustness,” SN Comput. Sci., vol. 2, no. 1, p. 32, 2021.

Source: [3]



Explainability for transparency

• Transparency is the original goal of XAI.

• Some studies have assessed XAI models are truly 
transparent, largely using end-user surveys [1-3].

• Explanations generally improved perceived 
understandability and transparency.

• Relatively few works have looked to quantify the 
genuine transparency of XAI approaches.

[1] E. Khodabandehloo et al., “HealthXAI: Collaborative and explainable AI for supporting early diagnosis of cognitive decline,” Futur. Gener. Comput. Syst., vol. 116, pp. 168–189, 2021.
[2] S. Singla et al., “Explaining the black-box smoothly—A counterfactual approach,” Med. Image Anal., vol. 84, p. 102721, 2023.
[3] M. Naiseh et al., “How the different explanation classes impact trust calibration: The case of clinical decision support systems,” Int. J. Hum. Comput. Stud., vol. 169, p. 102941, 2023.

Understandability

Trustworthiness

Transparency

Reliability

Example of survey approach

Low High



Explainability for fairness

• Explanations can reveal biases at local and global levels, allowing these to be 
rectified.

• LIME has been used to revealed biases in justice system AI models [1].

• Rule-based explainability has been proposed as a tool for ‘fairness auditing’ [2, 3].

• Some research suggests that some post-hoc methods exhibit unfairness [4] – meaning 
there is a research opportunity to improve on this.

[1] M. Miron et al., “Evaluating causes of algorithmic bias in juvenile criminal recidivism,” Artif. Intell. Law, vol. 29, no. 2, pp. 111–147, 2021.
[2] C. Panigutti et al., “FairLens: Auditing black-box clinical decision support systems,” Inf. Process. Manag., vol. 58, no. 5, p. 102657, 2021.
[3] C. Panigutti et al., “Doctor XAI: an ontology-based approach to black-box sequential data classification explanations,” in Proceedings of the 2020 Conference on Fairness, Accountability, 
and Transparency, 2020, pp. 629–639.
[4] J. Dai et al., “Fairness via explanation quality: Evaluating disparities in the quality of post hoc explanations,” in Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and 
Society, 2022, pp. 203–214.



Explainability for accountability

• Explainability can help end-users to hold AI 
accountable for its decisions

• GradCAM has been used to support 
auditability in x-ray classification systems 
[1].

• Explainable-by-design logistic regression 
models have been used to explain decisions 
to human end-users, who can then provide 
their feedback on the fairness of a decision 
[2].

[1] J. Chung et al., “Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models 
via a fine-tuning approach,” Sci. Rep., vol. 12, no. 1, p. 21164, 2022.
[2] Y. Nakao et al., “Toward Involving End-users in Interactive Human-in-the-loop AI Fairness,” ACM Trans. Interact. Intell. Syst., vol. 12, no. 3, pp. 1–30, 2022.

Source: [1]



Explainability for safety

• Explainability supports safety in critical decision making, and in detecting attacks.

• Explanations have been shown to improve patient safety by supporting doctors in 
understanding risk levels through counterfactuals and feature importances [1].

• LIME and SHAP have been shown to assist in detection and resolution of IoT network 
attacks [2].

[1] Y. Jia et al., “The Role of Explainability in Assuring Safety of Machine Learning in Healthcare,” IEEE Trans. Emerg. Top. Comput., vol. 10, no. 4, pp. 1746–1760, 2022. 
[2] Z. A. E. Houda et al., “‘Why Should I Trust Your IDS?’: An Explainable Deep Learning Framework for Intrusion Detection Systems in Internet of Things Networks,” IEEE Open J. Commun. 
Soc., vol. 3, pp. 1164–1176, 2022.



Using XAI to make responsible AIs

• Early works have shown that explainability supports responsibility in many ways

• … but the field is still in its infancy.

• There is significant research opportunity in this space.



Using XAI to make responsible AIs

Some thoughts on next research steps

• Responsibility can be improved in any AI work by incorporating explanations for 
improved transparency and assessment of robustness and fairness.

• Metrics are needed for quantifying whether explanations are genuinely 
interpretable - good explainability is essential for responsibility.

• Metrics and frameworks are needed for quantifying responsibility across all metrics 
– explainability has shown promise in developing these.

• Generative AIs are a problem area – need explanation methods that support 
responsible GenAI devopment and use.

• Human-in-the-loop feedback is an interesting but challenging direction for 
responsible AI



RESPONSIBILITY IN MY RESEARCH



My first steps towards responsible AI

• Used SHAP to analyse predictions in recent 
papers.
• This also helped to reveal problems in early 

iterations of my model!

• Included a simple confidence score to help 
clinicians assess my model’s certainty in a 
decision.

• Wrote a review paper that is currently 
under review.

• Next focus: quantifying explainability 
towards assessing which XAI methods are 
most useful in responsible AI.

Explanation at its simplest. 
Source: S. Baker et al., “Continuous and automatic 

mortality risk prediction using vital signs in the 
intensive care unit: a hybrid neural network 

approach,” Sci. Rep., vol. 10, no. 1, p. 21282, 2020.



My first steps towards responsible AI

• SHAP analysis is my most-used 
tool – I like the global and local 
contexts available. 

Source: S. Baker et al., “Hybridized neural networks 
for non-invasive and continuous mortality risk 

assessment in neonates,” Comput. Biol. Med., vol. 
134, p. 104521, 2021.



My first steps towards responsible AI

• SHAP analysis is my most-used 
tool – I like the global and local 
contexts available. 

Source: S. Baker et al., “A computationally efficient 
CNN-LSTM neural network for estimation of blood 
pressure from features of electrocardiogram and 

photoplethysmogram waveforms,” Knowledge-Based 
Syst., vol. 250, p. 109151, Aug. 2022.



Why this field?

• The AI explosion has meant lots of tools exist to make AI development easier.

• Hard to stand out by just applying AI to a new problem.

• Explanation helps to prove that your AI is good, while also supporting responsibility.

• Responsibility is hugely important to industry and governments – huge research 
opportunities in works that improve aspects of responsibility.
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