Comparing Spatial and Spectral Graph Filtering for Preprocessing Neurophysiological Signals

Stephan Goerttler^{1,2}, Min Wu², Fei He¹, Daniel Blackburn³, Ptolemaios Sarrigiannis⁴

¹ Centre for Comp. Science and Math. Modelling, Coventry University, UK

- ² Inst. for Infocomm Research, A*STAR, Singapore
- ³ Department of Neuroscience, University of Sheffield, UK

⁴ Department of Neurophysiology, Royal Devon and Exeter NHS Foundation Trust, UK

IEEE SPMB, December 2, 2023

Setting

- Electroencephalography (EEG) recording:
 - Multivariate signal (1)
 - Multiple sensors
 - Each sensor acquires time series
 - Data matrix shape:
 - $\# \mbox{ sensors } \times \ \# \ \mbox{time samples}$
- Graph filtering (2; 3)
 - Analogous to filtering in signal processing
 - Graph:
 - Encodes connectivity in the data
 - E.g. functional connectivity: Pairwise Pearson correlation
 - Filters are defined in terms of graph
 - Applications of graph filtering:
 - Graph denoising (4; 5)
 - Remove correlations
 - Graph filter layer in Graph Neural Network (6; 7)

Figure: Multivariate EEG signal

Figure: EEG spatial structure: correlations between channels

Finite Impulse Response (FIR) filter

- Signal is filtered by convolving signal with (localised) filter
 F = [θ₀, θ₁, ..., θ_{Nt-1}]:
 x_{filt} = F * **x**
- Filter with number of parameters k = 3:
 - $F = [\theta_0, \theta_1, \theta_2]$
- How to deal with boundaries?
 - no padding, padding, cyclic, ...
- Filter as matrix: using shift matrix **S**_L:

$$\begin{split} \mathbf{F} &= \theta_0 \mathbf{1} + \theta_1 \mathbf{S}_L + \theta_2 \mathbf{S}_L^2, \\ \mathbf{x}_{\textit{filt}} &= \mathbf{F} \mathbf{x} \end{split}$$

• Frequency formulation of FIR filter: Fourier filter

Fourier filter

- Time signal x is firstly transformed to Fourier domain: $x \to \widetilde{x}$
 - Note: Fourier signal x is complex (real and imaginary part)
 - Frequencies past the Nyquist limit mirror lower frequencies
 - Highest frequency is at Nyquist limit
- Fourier signal multiplied with spectral filter

 $F = [\theta_0, \theta_1, ..., \theta_{N_t-1}]$

- Alternative: filter with $k = 3 < N_t$ parameters:
 - $F = [\theta_0, \theta_0, ..., \theta_1, ..., \theta_2, \theta_2, ..., \theta_1, ..., \theta_0]$
- Filtered Fourier signal transformed to time domain: F ⊙ x̃ → x_{filt}
- Matrix notation (with discrete Fourier transform matrix W):
 x_{filt} = W⁻¹diag(F) W x

Introduction

Analogy classical filtering - graph filtering

Graph filter preprocessing

- Task: EEG Alzheimer's disease classification
- Use neural network to train filter coefficients!
- Base graph:
 - Pairwise Pearson correlation
 - Universal or individual
- (Trainable) graph filtering
 - GFR filter ("graph frequency response", Fourier filter)
 - GIR filter
- Extract features (power spectral densities)
- Classifier network (random fourier features layer (8), SVM-like)

Results - filter shape

- Test two filters: GIR and GFR
- Use universal graph (blue) and individual graph (orange)
- Vary # filter coefficients
- Run each configuration 30 times (3 sample sizes × 10 repeats)
- Results:
 - same filters learned across repeats
 - same filters learned even if # coeffs. varied
- Do trained filters generalise to unseen data?

Results - performance

- GIR filter:
 - Universal graph
 - Test accuracy constant, below baseline
 - Individual graph
 - sharply decreases with # parameters
 - Explanation:
 - E.g. GIR filter coefficient θ_{17} corresponds to \mathbf{A}^{17}
 - Universal θ₁₇ different for individual graphs A¹⁷_{p1} and A¹⁷_{p2}
- GFR filter (Fourier filter):
 - Test accuracy constant
 - No difference between universal and individual graph
 - Below baseline:
 - null result

Interpretation

- Null result:
 - Function of filtering not needed for classification network
- # filter parameters for GIR filter based on individual graph:
 - More coefficients: more detailed filter
 - Less coefficients: better generalisation
 - \rightarrow Trade-off between detail and generalisation
 - Interpretation in the literature:
 - Less coefficients: less parameters (7)
 - Only partly true!
- Optimal GIR filter likely not higher than k=3 or k=2
 - Similar findings in the literature (k <= 3) (9)
 - Holds even for large networks

References

References I

- E. Pereda, R. Q. Quiroga, and J. Bhattacharya, "Nonlinear multivariate analysis of neurophysiological signals," *Progress in neurobiology*, vol. 77, no. 1-2, pp. 1–37, 2005.
- [2] A. Sandryhaila and J. M. Moura, "Discrete signal processing on graphs," IEEE transactions on signal processing, vol. 61, no. 7, pp. 1644–1656, 2013.
- [3] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 808–828, 2018.
- [4] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, "Signal denoising on graphs via graph filtering," 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2014, pp. 872–876.
- [5] A. Pentari, G. Tzagkarakis, K. Marias, and P. Tsakalides, "Graph-based denoising of eeg signals in impulsive environments," 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021, pp. 1095–1099.

References II

- [6] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," *Advances in neural information processing systems*, vol. 29, 2016.
- [7] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," *arXiv preprint arXiv:1609.02907*, 2016.
- [8] A. Rahimi and B. Recht, "Random features for large-scale kernel machines," *Advances in neural information processing systems*, vol. 20, 2007.
- [9] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, "Simplifying graph convolutional networks," *International conference on machine learning*. PMLR, 2019, pp. 6861–6871.

Limitations of analogy

Time graph

FIR filter

 Highly localised: FIR filter with k = 3 only covers 3 nodes of time graph

Fourier filter

- Graph is directed \rightarrow eigendecomposition is complex
- eigenvalues have same magnitude:
 - ordering of frequency not by their eigenvalue magnitude
 - "High" frequencies past Nyquist limit are actually low frequencies

Arbitrary graph

- Generally not localised:
 - Example: each node connected to 10 nodes
 - impulse response of filter with k = 3 can cover up to 10 × 10 = 100 nodes!
- Graph is typically undirected \rightarrow eigendecomposition is real
- eigenvalues with different magnitude:
 - Clear ordering of frequency
 - But higher frequencies carry less meaning