The 2023 IEEE Signal Processing in Medicine and Biology Symposium

Performance Analysis of Low and High-Grade Breast Tumors Using DCE MR Images and LASSO Feature Selection

Priyadharshini. B*, Mythili A*, Anandh K R** *School of Electronics Engineering, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India. **Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati -45229, United States

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

Introduction

Breast Cancer Facts - In 2020, there were 2.3 million women diagnosed with breast cancer. (*WHO 2020*).

Causes of Breast cancer-Genetic, Environment, Early menstruation, and Late menopause.

Breast Anatomy- Parts-Ducts, Lobes, Lobules, Lymph node.

DCE MRI for breast imaging produces highresolution images for women at high risk of breast cancer and is also effective for evaluating dense female breasts

• Detect microscopic lesions in a (potentially) large volume of tissue. High temporal resolution while preserving high spatial resolution.

Introduction- Grade Facts

- Grade Prognostic factor and aggressive potential
- The 3 factors for one of the scoring systems are (the Nottingham Histologic Score system)
 - amount of gland formation
 - nuclear features
 - mitotic activity

Motivation

- Low grades (Grade I and Grade II) are less aggressive and show an avascular nature with less proliferation of tumors.
- High Grade is a more aggressive, highly intense, highly vascularized, and heterogenous large mass where necrotic, and apoptotic processes take place in the tumor.
- Needle biopsy may be a misinterpretation of the actual grade due to tumor heterogeneity.
- It is essential to ascertain suitable machine learning methods for differentiating low and high-grade breast tumors.

Aim & Objectives

Aim: To analyze Radiomics-based low and high-grade DCE-MR breast tumor classification with a collection of classifiers using LASSO feature selection

Objectives:

- Analysis of clinicopathological characteristics
- Feature selection by LASSO model
- classification of high-grade and low-grade tumors by using a collection of classifiers

Materials & Methods

Dataset description

- A total of 638 patients included in our study where 431(67.55%) were low-grade and 207 (32.44%).
- A total of 529 features named tumor enhancement, shape, enhancement of tissues surrounding, texture, and shape were extracted from the segmented tumor

Feature Selection

• LASSO regression analysis techniques are frequently employed in feature selection and binary classification.

$$L_{lasso}(\hat{\beta}) = \sum_{i=1}^{n} \left(y_i - x_i' \hat{\beta} \right)^2 + \alpha \sum_{j=1}^{m} \left| \hat{\beta}_j \right|$$

• Pairwise Pearson Correlation Coefficient Matrix (PCCM) identified high-correlated feature pairs

Materials & Methods

Classifiers

- Logistic regression (LR), k-nearest Neighbors (KNN), Linear discriminant analysis (LDA), Gaussian Naïve Bayes (GNB), Linear Support Vector Machines (LSVM), and Random Forest (RF) were implemented for the classification of Low and High grade
- The performance of different classification models was analyzed by using evaluation matrices such as Accuracy, Sensitivity, Area Under the receiver operating characteristic Curve (AUC), specificity, F1-score, Precision, Positive Predictive Value (PPV), and Negative Predictive Value (NPV).

Representative set of breast DCE MR Images of two different Highgrade patients acquired in the axial plane (a) one can appreciate highintensity tumor and (b) one cannot appreciate high-intensity tumor

Representative set of breast DCE MR Images of two different Low-grade patients acquired in the axial plane (a) one can appreciate moderate-intensity tumor and (b) one cannot appreciate moderate-intensity tumor.

Clinicopathologic Characteristics

	Low grade	High grade	p-value		
No of subjects	431(67.55%)	207(32.44 %)			
Age(Mean±SD)	54.69±10.86	49.90 ± 11.61	0.6921		0.575 Average across the folds
Estrogen receptors status			<.00001	0.050 -	alpha: CV estimate
Positive	376(87.23%)	105(50.72%)			0.550 -
Negative	55(12.76%)	102(49.27%)		2 0.025 -	
Progesteron			<.00001		ē 0.525 -
receptor status					2 a saa
Positive	338(78%)	75(36.23%)			ā 0.500 -
Negative	93(21.57%)	132(63.76%)		-0.025 -	D
HER2 status			0.00239		⊆ 0.475
Positive	62(13.38%)	50(24.15%)			<u> </u>
Negative	369(85.61%)	157 (75.84%)		-0.075 -	0.450 -
Response status			<.00001	<u>ت</u>	and the second
PCR	9(2.08%)	37 (17.87%)		-0.100	0.425 -
Non-PCR	83(19.25%)	59 (28.50%)			
Not Available	332(77.03%)	103 (49.75%)		····· · · · · · · · · · · · · · · · ·	········
Others	7(1.62%)	9 (4.34%)		10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}	10 ⁴ 10 ⁵ 10 ⁶
Menopausal Status			0.02629	alpha	alphas
Premenopausal	179(41.53%)	109(52.65%)		LASS	SO Analysis
Postmenopausal	241(55.91%)	95(45.89%)			
Not Available	11(2.55%)	3(1.44%)			
Bilateral status			0.00451		
Bilateral	25(5.80%)	2(0.96%)			
Non -Bilateral	406(94.66%)	205(99.03%)			

Performance Analysis of Different Classifiers for Categorizing Low and High-Grade

Classifiers	Accuracy (%)	AUC	Sensitivity (%)	F1-score	Specificity (%)	Precision	NPV
LD	74.6	0.78	91.53	0.82	39.68	0.75	0.69
LR	75.6	0.76	92.30	0.83	41.26	0.77	0.72
GNB	73.6	0.74	90.76	0.82	38.09	0.75	0.67
L-SVM	77.9	0.79	96.15	0.86	39.52	0.82	0.58
C-KNN	73.6	0.70	91.53	0.82	36.50	0.74	0.67
RF	74.4	0.71	91.36	0.84	30.18	0.76	0.57

LASSO Selected Features

Selected Features

Inf_mea_of_corr2_Tumor'

Grouping_based_proportion_of_tumor_voxels_3D_tumor_Group_1

Mean_norm_DLBP_max_timepoint_binsize_256_with_filling_Tumor

SER_Total_tumor_vol_cu_mm WashinRate_map_information_measure_correlation2_tumor WashinRate_map_inverse_difference_normalized_tumor WashinRate_map_skewness_tumor PE_map_information_measure_correlation2_tissue_PostCon

AUC for L-SVM Classifier

Conclusions

- An experiment was conducted to classify breast tumor grades using different classifiers.
- LASSO feature selection method with optimal hyperparameter selection has selected 8 optimal features for the evaluation process.
- The clinical and histopathological characteristics tabulation revealed highly significant differences between the clinical parameters and tumor grades.
- For the feature's multi-collinearity identification, a Pearson Correlation Heat Map has been generated.
- Lastly, the collection of classifiers was involved in tumor grade classification.

REFERENCES

[1] L. Wilkinson and T. Gathani, "Understanding breast cancer as a global health concern.," Br. J. Radiol., vol. 95, no. 1130, p. 20211033, Feb. 2022.

[2] V. F. Grabinski and O. W. Brawley, "Disparities in Breast Cancer.," Obstet. Gynecol. Clin. North Am., vol. 49, no. 1, pp. 149–165, Mar. 2022.

[3] A. I. Baba and C. Câtoi. Comparative Oncology. Bucharest (RO): The Publishing House of the Romanian Academy; 2007. Chapter 3, TUMOR CELL MORPHOLOGY. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9553/

[4] S. M. Telloni, "Tumor Staging and Grading: A Primer.," Methods Mol. Biol., vol. 1606, pp. 1–17, 2017.

[5] H. Chen, Y. Min, K. Xiang, J. Chen, and G. Yin, "DCE-MRI Performance in Triple Negative Breast Cancers: Comparison with Non-Triple Negative Breast Cancers.," Curr. Med. imaging, vol. 18, no. 9, pp. 970–976, 2022.

[6] Y. Zhou, G. Zhou, J. Zhang, C. Xu, F. Zhu, and P. Xu, "DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma.," Eur. Radiol., vol. 32, no. 7, pp. 5004–5015, Jul. 2022.

[7] R. A. Gatenby, O. Grove, and R. J. Gillies, "Quantitative imaging in cancer evolution and ecology.," Radiology, vol. 269, no. 1, pp. 8–15, Oct. 2013.

[8] J. Wu et al., "Radiological tumor classification across imaging modality and histology.," Nat. Mach. Intell., vol. 3, pp. 787–798, Sep. 2021.

[9] F. Cardoso et al., "Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†].," Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., vol. 30, no. 8, pp. 1194–1220, Aug. 2019.

[10] E. A. Rakha et al., "Breast cancer prognostic classification in the molecular era: the role of histological grade.," Breast Cancer Res., vol. 12, no. 4, p. 207, 2010.

REFERENCES

[11] C. Sotiriou et al., "Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.," J. Natl. Cancer Inst., vol. 98, no. 4, pp. 262–272, Feb. 2006.

[12] E. A. Martin et al., "Current status of biopsy markers for the breast in clinical settings.," Expert Rev. Med. Devices, vol. 19, no. 12, pp. 965–975, Dec. 2022.

[13] K. Clark et al., "The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository," J. Digit. Imaging, vol. 26, no. 6, pp. 1045–1057, 2013.

[14] A. Saha et al., "A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features.," Br. J. Cancer, vol. 119, no. 4, pp. 508–516, Aug. 2018.

[15] Y. Huang et al., "Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.," Front. Oncol., vol. 11, p. 706733, 2021.

[16] H. Lu and J. Yin, "Texture Analysis of Breast DCE-MRI Based on Intratumoral Subregions for Predicting HER2 2+ Status.," Front. Oncol., vol. 10, p. 543, 2020,.

[17] A. I. Rozhok and J. DeGregori, "The evolution of lifespan and age-dependent cancer risk.," Trends in cancer, vol. 2, no. 10, pp. 552–560, Oct. 2016.

[18] M. C. White, D. M. Holman, J. E. Boehm, L. A. Peipins, M. Grossman, and S. J. Henley, "Age and cancer risk: a potentially modifiable relationship.," Am. J. Prev. Med., vol. 46, no. 3 Suppl 1, pp. S7-15, Mar. 2014.

[19] K. I. Sundus, B. H. Hammo, M. B. Al-Zoubi, and A. Al-Omari, "Solving the multicollinearity problem to improve the stability of machine learning algorithms applied to a fully annotated breast cancer dataset," Informatics Med. Unlocked, vol. 33, p. 101088, 2022.