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Introduction



A typical EEG 
classification 
task workflow 
based on 
machine 
learning.
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The Windowing 
Conundrum in EEG 
Classification

•Labeling Dilemma: One label per session 
may not reflect the true nature of each 
window, leading to potential 
misclassification.
•Result Aggregation: Determining the overall 
recording status from windowed results is 
uncertain—abnormal recordings could 
contain normal windows.
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Integrating EEG Data with 
an Arbitration Model

Model Design: We created a model to synthesize 
window results in an EEG.
Window-Level Learning: It captures window 
interrelationships.
Bias Correction: It corrects label bias for accurate 
EEG interpretation.
Arbitration Innovation: First to emphasize and 
utilize machine learning in arbitration, marking a 
significant advancement in the field.

Method



Diverse Input Strategies 
for EEG Data Analysis
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Arbitration  Model Architecture 
(Artificial Neural Network)

per-window 
probability

Linear Convolutionor

Activation Function

Softmax Layer

× 𝑛

Output

•Final Architecture: The proposed models consist 
of a fully-connected layer followed by a softmax
layer for final classification.
•Depth and Size Variations: We tested multi-layer 
perceptrons with 1 to 4 layers and hidden layers 
ranging from 5 to 20 units in size.
•Alternatives to Fully-Connected Layers: We also 
experimented with convolutional layers as an 
alternative to fully-connected ones.
•Activation Functions: Different activation 
functions were trialed, including RELU, ELU, and 
GELU.
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The Scope Issue and 
Window Length

Scope Limitation: Traditional models may 
miss the full EEG context.
Global Info: Bigger windows provide a 
broader view.
Solution: Longer windows for better EEG 
capture.
Note: This complements machine learning 
arbitration.

Recording

Window

Windowing

Larger

Method



Results



Results



Arbitration  Model Results on BD-Deep4 [1]

Performance of different arbitration models using window lengths of  
60 s. Points with the same marker shape come from the same instance 
of the first-stage model (BD-Deep4). The dashed lines represent the 
mean for each arbitration method.

Results



Effect of Window Length

Results

Increasing window length improves accuracy by 
increasing sensitivity, with relatively little effect on 
specificity



Arbitration  Model Results on TCN [5,14] and ViT [15]

（a）TCN （b）ViT

Performance of different arbitration methods using (a) TCN and (b) ViT
as the first-stage architecture with a window length of 60 s.
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Conclusion

•Approach Benefits: Our method surpasses prior EEG 
classification benchmarks.

•Enhanced Sensitivity: More accurate window-label 
alignment boosts model sensitivity.

•Clinical Relevance: This could streamline EEG analysis 
for healthcare providers.

•Broader Impact: The method may be applicable to 
other time-series tasks.

•Note: The inter-rater agreement ceiling is not a 
constraint for TUAB.



Thank You!
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Arbitration  Model 
Architecture (XGBoost)

•Tabular Data Perspective: We treated 
the outputs of the first-stage model as 
tabular data, which led us to evaluate 
XGBoost, known for its strong 
performance on such datasets.
•Hyperparameter Optimization: A grid 
search was utilized during each training 
run to find the optimal 'maximum depth' 
from {5, 10, 15, 20, 25}, using three-fold 
cross-validation for selection.



Table 1: Summary of state-of-the-art performance metrics 
for different models applied to abnormal EEG classication
on the TUAB dataset

Comparison of performance between models



Second-Stage  Model Results

Performance comparison of single-stage and various two-stage 
architectures, all with a window length of 60s, using the TUAB dataset. 
Each column represents a different arbitration method. Each marker 
type represents a different first-stage architecture. Each data point is 
the average accuracy across twenty-five experiments.
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