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Metagenomics: The study of genetic material directly extracted from environmental or clinical samples
through sequencing methods.
Metagenomics enables the identification of diverse microbial species within a given environment.
Understanding richness and abundance provides insights into ecosystem health and functioning.
Analysis of metagenomic data identifies functional genes and pathways in microbial genomes.
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Researchers harness Natural Language Processing (NLP) to train machine-learning models,
generating vector representations from word sequences.
This breakthrough in representation learning holds promise for analyzing biological sequence data.
The first step in any natural language-based model is tokenization of sentences. Each token
represents a meaningful unit of the text.
In biological sequences, each sequence is analogous to a sentence, and DNA sequences are
composed of individual nucleotides. Effective extraction of meaningful sub-words from biological
sequences using k-mer tokenization.
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Introduction
Language modeling is a specific task in NLP where the model tries to predict a token based on
surrounding tokens. 
Various techniques, including Word2Vec, LSTM, GloVe, and Transformers, are employed to obtain
representation embedding vectors for biological k-mer sequences based on Language Modeling.
RoBERTa, a version of the BERT model, exhibits superiority in its transformer architecture.
Notably, RoBERTa focuses more on masked token prediction compared to BERT.
To capture intricate patterns in metagenomics, we hyperparameter-tuned the RoBERTa model
using metagenomic data.

Masked Language Modeling 6-mer Representation



Methodology



Pretraining-Dataset: Comprehensive dataset  of 33,902 prokaryotic genomes from NCBI, average length
of 3.4 Mb. 

       Prokaryotic genomes, unlike eukaryotes, exhibit compact structures and high gene density.
      Two subsets: 7 million genomic fragments (200bp) and 51 million fragments, maintaining diversity.
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Bacterial-16s  DairyDB Dataset: comprises 10,612 full-length 16S rRNA genes from microbial species in dairy products. The 16S rRNA gene
serves as a marker for taxonomic and phylogenetic analyses. The dataset includes 80,227 fragments (200bp) representing 42 phyla, 197
orders, and 1069 genera
Fungi-ITS Dataset: From Fungi RefSeq ITS project: 15,551 sequences from non-gene coding region. Extracted 50,068 fragments (200bp)
showcasing diversity across 6 phyla, 235 orders, and 516 families.
Fungi-28s Dataset: Curated 28s rRNA genes from mothur project: 8,506 unique sequences. Extracted 42,766 fragments (200bp) covering
sequences from 8 phyla, 105 orders, and 293 families.
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DNA Language Model Training
Customized RoBERTa model tailored for analyzing prokaryotic genomes. Main architecture and transformers
from RoBERTa, with modifications for optimized performance in genomics sequences.
Input length selected as 200bp, considering the short-read nature of popular Illumina sequencing.
Parameter selection strategy based on two metrics: pre-training loss and downstream task accuracy
(taxonomy classification).
Due to the time and cost involved in training large language models, a subset of parameters is selected for
experimentation.
Iterative testing involves swapping one parameter at a time to assess its impact on both downstream task
accuracy and pre-training loss. 
Parameters chosen for evaluation include k-mer size, positional embedding type, maximum positional
embedding size, model size, dataset size, and embedding size.
Parameters such as the number of attention heads and forward layers investigated for optimization( Model
Size).



Zipf’s Law of the pre-training dataset of ~34k
genomes for Different k-mer Lengths

Zipf's Law plots can inform
optimal vocabulary choices by
highlighting a balance between
high-frequency words, which
could convey insignificant
meaning in certain cases, and
low-frequency (rare) words,
potentially posing training
challenges.

The Zipf's Law plot
demonstrates a natural
increase as the number
of kmer decreases



Comparison of Model Accuracies for Different
Tasks with Respect to K-mer Size

In kmer analysis, as
vocabulary grows, training
loss may rise. This highlights
the need for alternative
metrics for better
comparisons.

We have 9 tasks across
three datasets ITS, 16s,
28s and are calculating
accuracy for various
taxonomy levels within
each dataset.



Comparison of Average Accuracy and
Training Loss for Different Parameters

Default value for
max_position_embeddings
in BERT and RoBERTa: 512
Crucial to note its role with
positional embedding type
in position encoding
Consider tuning based on
sequence length for optimal
model performance.

 Study emphasis: Overfitting
effects on pre-training tasks
Highlight: Potential lack of
generalization to other datasets
in downstream tasks, despite low
loss for MLM (Masked Language
Model)

An example emphasizes that high
accuracy doesn't ensure
parameter effectiveness. A low
pretraining loss suggests
inadequate model training.



 Phylum Distribution and Positional Insights of
Embeddings(6mer) 

Fragments positions in 16s dataset Top five phyla in 16s dataset

8 clusters representing
positions of fragments in
sequences
Model excels in accurately
classifying local clusters
within each positional
cluster

It is highly interesting to utilize such a pre-trained model for positional-
based applications, such as detecting variable regions in 16S rRNA genes .



 Phylum Distribution and Positional Insights of
Embeddings(6mer)  

Fragments positions in 28s dataset Top five phyla in ITS dataset

Pre-trained model shows potential to detect both positional and taxonomy
information
Tested on out-of-domain datasets not used during training
Emphasis on assessing generalizability of results



 Accuracy  of Taxonomic Classification 
Bacterial 16s DatasetFungi 28s DatasetFungi ITS Dataset

K-mer frequency representation combined with Random Forest (RF) yields superior accuracy in most tasks.
RF prioritizes motif composition over the entire sequence, aligning well with the nature of sequences where taxonomy is
more influenced by motif composition than positional information.
Pretrained model excels in tasks involving local taxonomy class representation, outperforming KNN + k-mer frequency,
as confirmed by t-SNE comparison results.
Our Model Outperforms DNABERT consistently across all tasks, highlighting the challenge of generalizing a model
trained on a different domain (e.g., human genomes) to taxonomy-based sequences in prokaryotes.



Conclusion

Demonstrated the effectiveness of our optimized RoBERTa model for taxonomic classification.
Rigorous performance evaluation across diverse downstream datasets (In-domain and out of domain )
and genes.
Notable observation: Ability to capture positional information, such as variable regions in the 16S
dataset.
The model's applicability for different downstream tasks, like SNP detection, may require higher input
data and optimization for longer sequences. Highlighting the need for task-specific fine-tuning to
achieve optimal performance.

Planned use of the pretrained language model for gene function prediction. Suggested exploration for
gene function prediction to provide insights into the functional capabilities of different organisms and
uncover novel biological pathways.
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