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Abstract— This study compares different machine learning
(ML) approaches to classify motion-based activities of
daily living based on accelerometer measurements, fo-
cusing on identifying different types of falls. Falls are a
significant cause of injuries and deaths in older adults,
emphasizing the need for real-time fall detection and alert
systems. ML algorithms have shown high accuracy in
detecting falls in experimental settings, but their perfor-
mance in real-world scenarios still needs to be studied.

Two publicly available datasets, collected from healthy
subjects with smartphone accelerometers, were used for
evaluation. Different ML classifiers (Support Vector Ma-
chine, Random Forest, CatBoost, and a meta-algorithm)
were tested using raw accelerometer data and selected
features in the time and frequency domains. Results
demonstrated that CatBoost and Random Forest outper-
formed Support Vector Machine in both datasets when
using a carefully chosen set of features instead of the
raw data as input. CatBoost, although accurate, showed
higher computational costs, making Random Forest a
more practical choice for real-world applications. The
meta-ML system did not provide a significant advantage
over individual algorithms.

This research contributes insights into feature selection
and computational efficiency in accelerometer data classi-
fication. It provides evidence-based recommendations for
practitioners working with activities of daily living classi-
fication and fall detection, aiming to enhance the use of
ML in real-world scenarios and improve the quality of life
for individuals requiring monitoring and fall prevention.

Keywords— Inertial sensors, IMU, Support Vector Machine,
Random Forest, CatBoost, Generalizability.

I. INTRODUCTION

The ability to independently perform Activities of Daily
Living (ADLs) is crucial for maintaining autonomy and
high quality of life. ADLs encompass fundamental self-
care tasks and different types of movements, includ-
ing walking at various paces, running, going up and
down the stairs, etc. As the global population ages and
the prevalence of chronic conditions rises, there is a
growing interest in leveraging advanced technologies to
monitor and assist individuals in their daily activities.

In recent years, the use of machine learning algo-
rithms in combination with wearable accelerometers
has emerged as a promising approach for classifying
motion-based ADLs [1–3]. Accelerometers are small,
unobtrusive devices capable of capturing the body’s
movements, making them ideal for real-time activity

monitoring. Machine learning techniques enable the
extraction of meaningful patterns and features from
accelerometer data, facilitating the identification and
classification of specific ADLs.

The classification of distinct ADLs based on accelerom-
eter measurements has gained significant attention due
to its potential applications in real-time activity track-
ing and diagnostics of unwanted events, particularly
falls. Machine learning algorithms have been widely
used in this domain to accurately detect and classify
activities. Previous studies have investigated the op-
timal placement of accelerometers on the body for
activity detection [4]. The hip has been found to be
the best single location for recording data, providing
better accuracy than other locations [4]. Additionally,
combining data from multiple sensors has been shown
to improve classification accuracy [5]. However, it is
important to note that the accuracy of classification al-
gorithms trained in laboratory conditions may decrease
when applied to free-living subjects [3, 6]. Therefore,
further research is needed to evaluate the reproducibil-
ity of classification algorithms in daily life settings.
This paper aims to contribute to the existing literature
by proposing a comparison between different machine
learning approaches to classify activities of daily living
based on accelerometer measurements, with a focus on
identifying different types of falls.

The motivation behind this research is to keep track
of users’ activities in real-time and provide possible
diagnostics of unwanted and unexpected events, with
special attention to movements during human falling
and the distinction among various types of falls. Falls
are a major cause of injuries and deaths in older adults,
and even when no injury occurs, individuals who fall
often require assistance to get up [7]. Machine learning
algorithms have been utilized to achieve high accuracy
in detecting falls in experimental settings [8, 9]. How-
ever, studies examining the accuracy of fall detection al-
gorithms in real-world settings are less common [7, 10].
Therefore, this research aims to validate the accuracy
of machine learning-based fall detection systems using
real-world fall and non-fall datasets.

II. MATERIALS AND METHODS

We tested and compared four different machine learning
classifiers, using either raw accelerometer data (x−y−z
axis) or 94 important features (in the time and frequency
domains) as input. We trained and tested on a first
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smaller and simpler ADLs dataset and then verified the
generalizability of our findings on a larger and more
complex dataset. Here, we describe in detail the datasets
used, the two types of input data, the machine learning
architectures, the statistical analysis performed, and a
summary of the hardware and software used.

ADL Datasets

Both datasets have been collected on healthy subjects
with a smartphone or smartphone-like accelerometers.
The first dataset is called UniZgFall and contains data
from 16 young healthy subjects performing 10 types
of ADLs and simulated falls while wearing an inertial
sensor unit (Shimmer sensing, Ireland) attached side-
ways to their waist [11]. Each item in the dataset is a
N×3 matrix, where N is a variable number of samples,
and each column contains accelerations (m/s2) along the
x−y− z axes, sampled at 200 Hz. Each item is labeled
with one of the following classes: Walking (MW),
Running (MR), Jumping (MJ), Walking down the stairs
(WD), Walking up the stairs (WU), Forward fall (FF),
Sideways fall (FS), Backward fall (FB), Lying down
(LD), Other tasks/inactive (OT). The dataset contains
468 items and is unbalanced: 68 items each for MW,
MR, and MK, 13 items each for WD and WU, 34 items
for FF, FS, FB, and LD, and 102 items for OT.

The second dataset is larger and more complex; it is
called UniMiB SHAR and includes 1980 items of both
human activities and falls performed by 30 subjects of
ages ranging from 18 to 60 years [12]. The smartphone
used in the experiments was a Samsung Galaxy Nexus
I9250. Here too, each item is a N × 3 matrix, but the
sampling rate was set to 50 Hz. Items belong to 17
different classes as reported in Table 1. The dataset is
unbalanced since physiological activities (#1-9) have 60
items each, while all fall types (#10-17) have 180 items.

Table 1. ADLs and fall types categories in UniMiB SHAR
dataset.

# Description Label
1 From laying on the bed to standing StandingUpFL
2 From standing to lying on a bed LyingDownFS
3 From standing to sitting on a chair StandingUpFS
4 Moderate running Running
5 From standing to sitting on a chair SittingDown
6 Climb the stairs moderately GoingDownS
7 Down the stairs moderately GoingUpS
8 Normal walking Walking
9 Continuous jumping Jumping
10 Fall backward while trying to sit on a chair FallingBackSC
11 Generic fall backward from standing FallingBack
12 Falls using strategies to prevent the impact FallingWithPS
13 Fall forward from standing FallingForw
14 Fall right from standing FallingLeft
15 Fall right from standing FallingRight
16 Falls with contact to an obstacle HittingObstacle
17 Getting unconscious Syncope

Input data

We wanted to test if the machine learning architecture
led to higher accuracies when working with raw ac-

celerometer data or with selected features in both the
time and frequency domains. For this reason, two types
of inputs were provided.

Raw data. In this case, for each item of the dataset, we
built N × 3 matrices containing the raw accelerometer
signals measured along the 3 axes. Since we had to
provide input data with a fixed shape, while each item
has a variable number of samples, we set the number
N of rows to the maximum length of the whole dataset,
namely 5150 samples (i.e., 25.7 s) and 3208 (i.e., 64.2 s)
for UniZgFall and UniMiB SHAR datasets, respectively.
We performed a zero-padding for all items to transform
them to the maximum shape.

Features. We selected and computed for each item
94 salient features: 50 in the time domain (16 for
each axis, plus 2 combining more axis) and 44 on the
computed Fast-Fourier transform (FFT) (14 for each
axis, plus 2 combining more axis), as reported in Table
2. The majority of these features are intuitive and easy
to understand. To compute the Energy of a signal in
each axis, we take the mean of the sum of squares of
the values within a window along that specific axis.
The Average resultant acceleration is calculated by
finding the average of the square roots of the squared
values from each of the three axes, which are then
added together. Signal Magnitude Area is defined as the
average of the absolute values of the three axes. The
94 features used in our analysis were carefully selected
based on comprehensive literature studies focusing on
feature selection within x−y− z accelerometer datasets
used for classification purposes. Incorporating features
from both the time and frequency domain is crucial for
a comprehensive analysis of accelerometer data. Time
domain features offer interpretability, capturing transient
events and providing real-time relevance. Meanwhile,
frequency domain analysis decomposes signals into
constituent frequencies, revealing hidden patterns, aid-
ing in noise filtering, and discerning subtle activities.
Integrating both domains provides a complementary
set of information that is supposed to enhance the
classification capabilities of the algorithms.

Machine Learning Algorithms

Among the myriad of machine learning methods for
the classification of accelerometer data, three methods
have been selected: Support Vector Machine (SVM),
Random Forest (RF), and CatBoost (CAT) [13]. SVM
was chosen for its high degree of explainability and
lightweight [14]. RF was selected because it is an effec-
tive method for ranking the importance of variables in a
classification problem [15]. CatBoost, on the other hand,
is a high-performance library for gradient boosting on
decision trees that has shown superior performance in
other domains, such as audio signals [16].

SVM is a well-established machine-learning method
for classification problems. It utilizes a decision sur-
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Table 2. Features extracted from the raw accelerometer signals

# Description Acceleration FFT
1 Mean ✓ ✓
2 Standard deviation ✓ ✓
3 Average absolute deviation ✓ ✓
4 Minimum ✓ ✓
5 Maximum ✓ ✓
6 Maximum - minimum ✓ ✓
7 Median ✓ ✓
8 Median absolute deviation ✓ ✓
9 Interquartile range ✓ ✓
10 Negative values count ✓ ✓
11 Positive values count ✓
12 Number of values above mean ✓
13 Number of peaks ✓ ✓
14 Skewness ✓ ✓
15 Kurtosis ✓ ✓
16 Energy ✓ ✓
17 Average resultant acceleration ✓(1 value) ✓(1 value)
18 Signal magnitude area ✓(1 value) ✓(1 value)

face constructed in high-dimensional feature space. The
support-vector network, which is the basis of SVM, has
been shown to have high generalization ability and can
handle non-separable training data [13, 14]. We used it
with enabled probability estimates.

RF is a popular machine learning method that utilizes
an ensemble of decision trees to make predictions. It is
known for its ability to rank the importance of variables
in a classification problem and has been used success-
fully in various domains, including physical activity
classification using accelerometer data [5, 15]. We set
the number of decision trees in the forest to 100.

CatBoost is a relatively new gradient boosting toolkit
that has gained attention for its superior performance in
various datasets. It incorporates innovative algorithms
for processing categorical features and implements or-
dered boosting, a permutation-driven alternative to the
classic boosting algorithm [16]. CAT has been shown
to outperform other publicly available boosting imple-
mentations in terms of quality.

SVM, RF, and CAT are three machine-learning meth-
ods that have been selected for the classification of
accelerometer data. SVM is chosen for its explainability
and lightweight, RF for its ability to rank variable
importance, and CatBoost for its superior performance
in various domains. These methods have been widely
used and have shown promising results in the classi-
fication of accelerometer data. In addition, we tried a
multi-architecture decision system (called ALL) where
the prediction of the testing classes was performed
considering, for each item of the testing set, the class
predicted with the highest confidence by SVM, RF,
and CAT. If not differently stated, we used the default
parameters for the three architectures in all cases.

In our study, we utilized a stratified 10-fold cross-
validation approach to rigorously assess the perfor-
mance and robustness of our machine learning model.
Stratified cross-validation tackles this issue by ensuring
that each fold maintains the same class distribution as

the original dataset. By doing so, we obtain a more
reliable estimate of the model’s performance, especially
when dealing with imbalanced datasets. This approach
enhances the generalization capability of our models
and provides a more robust assessment of their effective-
ness across various class distributions. When creating
the fold, we enabled shuffling.

Statistical Analysis

We used two metrics to evaluate the performance of the
systems for the multi-class classification problem: accu-
racy (i.e., the number of correctly classified items over
the number of test items) and the F1-score, computed
through a multi-class formulation: each class against the
others. For each class i, the F1-score is computed as:

F1− scorei =
2 ·Precision ·Recall
Precision+Recall

(1)

The global score is defined as the average value between
all the F1 − scoresi. Since the time taken for the
training is another important metric, we computed the
training time needed by each fold. For RF and CAT,
we could also analyze the relative importance of each
feature. Finally, we visualize the per-class performance
via normalized confusion matrices (averaging across the
10 folds). For each condition, we reported the metrics
as median [25th - 75th percentiles]. We performed
statistical tests to verify, in each condition, differences
between the performance of SVM, RF, CAT, and ALL.
Given the low sample size, we used non-parametric
statistics: the Kruskal-Wallis test and post hoc analysis
via Dunn’s test with Bonferroni correction.

Hardware and Software

Data processing and training were performed on a vir-
tual machine running Ubuntu 22.04.1 LTS, with Python
3.10.6, sklearn 1.2.2, catboost 1.1.1, scipy 1.10.1, scikit
posthocs 0.7.0. The virtual machine had the following
technical specs: Intel(R) Xeon(R) CPU E5-2690 v3
@2.60 GHz, 16 CPUs, 64 GB RAM memory. We
did not use GPU accelerators. To guarantee a maxi-
mum degree of reproducibility, all the code for training
and analysis is openly available at https://github.com/
alberto-antonietti/ml_accelerometers.

III. RESULTS

UniZgFall Dataset

All four algorithms did not work particularly well when
the raw acceleration data were used as input (Figure
1) Left panels), with accuracies for SVM = 0.78 [0.72
0.83], for RF = 0.72 [0.68 0.79], CAT = 0.77 [0.70
0.81], ALL = 0.79 [0.70 0.87], and no significant
differences (Kruskal-Wallis test p-value = 0.42). F1-
scores for SVM = 0.67 [0.58 0.76], for RF = 0.66 [0.63
0.75], for CAT = 0.65 [0.60 0.74], ALL = 0.68 [0.59
0.82], without any difference (p-value: 0.96). RF was
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Figure 1. UniZgFall dataset. Accuracy and F1-scores boxplots
for the four machine learning systems providing raw data (left
panels) or selected features (right panels) as input .

very fast, 1.79 [1.59 2.08] s for training, SVM slower,
227.40 [196.47 256.27] s, and CAT extremely heavy
1456.68 [1445.38 1624.03] s. We do not report the time
needed by ALL since it is given by the sum of SVM,
RF, and CAT times.

When using the selected features as input, the perfor-
mances definitively improved for all algorithms, but
SVM (Figure 1) Right panels). Accuracies are SVM =
0.78 [0.76 0.81], RF = 0.88 [0.87 0.96], CAT = 0.92
[0.89 0.96], ALL = 0.92 [0.87 0.96]. Only SVM is
significantly different from the other groups (Kruskal-
Wallis test p-value: 5.6 · 10−5). F1-scores are SVM =
0.68 [0.65 0.75], RF = 0.89 [0.86 0.94], CAT = 0.91
[0.88 0.97], ALL = 0.90 [0.86 0.97]. SVM is the only
different one, too (p-value: 5.5 ·10−5). Given the smaller
size of the input, due to the feature selection, training
times drastically decreased: SVM = 0.11 [0.11 0.11] s,
RF = 0.42 [0.41 0.45] s, CAT 17.71 [17.43 17.90] s.

Analyzing in more detail the output of the best algo-
rithm (CAT), the normalized confusion matrices (Figure
2) show a large number of misclassifications when using
raw data and very good behavior when using features.
In this case, CAT had some difficulty in distinguishing
forward falls (FF) from the other two types of falls and
between laying down (LD) from other unclassified tasks
(OT). The most important feature for both RF and CAT
was Energy along the y axis (3.5% and 5.0%, respec-
tively). Features of the y axis were significantly more
important than the other two axes (40.3% and 43.6%),
as well as frequency features (58.6% and 51.2%).

UniMiB SHAR Dataset

We observed similar trends on the other dataset, which
is larger (1980 items instead of 468) and more complex
(17 classes instead of 10). Accuracies and F1-scores

Figure 2. UniZgFall dataset. Normalized confusion matrix
made averaging the results from the 10 folds with the CAT
algorithm, providing as input raw data (upper panel) or
selected features (lower panel).

were significantly better when using features as input,
except for SVM, which had bad performances in both
cases (Figure 3). More precisely, for raw data accura-
cies: SVM = 0.49 [0.44 0.53], RF = 0.56 [0.51 0.59],
CAT = 0.55 [0.54 0.61], and ALL 0.55 [0.55 0.60], with
SVM performing statistically lower than CAT and ALL
(p-value = 0.0015). Similar output for the F1-score:
SVM = 0.51 [0.48 0.55], RF = 0.57 [0.55 0.62], CAT
= 0.60 [0.55 0.64], ALL = 0.60 [0.55 0.62] (p-value
= 0.0019). Training times are in line with the results
obtained on the UniZgFall dataset.

With features, we had the following accuracies: SVM
= 0.32 [0.31 0.35], RF = 0.67 [0.63 0.71], CAT =
0.71 [0.68 0.73], ALL = 0.70 [0.69 0.74], and F1-
scores: SVM = 0.31 [0.27 0.32], RF = 0.72 [0.68 0.75],
CAT = 0.75 [0.71 0.77], ALL 0.75 [0.72 0.79]. In
both cases, SVM performed significantly worse than
the other three algorithms. SVM and RF continued to
be pretty fast (2.23 [2.20 2.36] s and 1.71 [1.71 1.74]
s, respectively), while CAT is computationally costly
(35.76 [35.69 35.97] s).

The normalized confusion matrices (Figure 4) highlight
where the CAT algorithm made the most errors. As
expected, the results with raw data contain more spread
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Figure 3. UniMiB SHAR dataset. Accuracy and F1-scores
boxplots for the four machine learning systems providing as
input raw data (left panels) or selected features (right panels).

misclassified items, while with features, CAT found it
difficult to choose the correct fall type and to identify
movements from and to horizontal positions (e.g., stand-
ing up after lying on a bed). Among the most important
features, we found above_mean along the y and z axes
for both RF and CAT. Features of the y and z axes
were slightly more important (values around 34%) than
the x axis (around 28%), and frequency features were
less important (47.7% and 41.1% for RF and CAT,
respectively) than time-domain ones.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we presented a comprehensive analysis
of multi-class accelerometer data classification using
machine learning algorithms. Our study aimed to elu-
cidate the key factors influencing model performance
and generalizability, shedding light on the most effective
approaches for real-world applications.

One of the fundamental aspects of our research is the
utilization of two distinct datasets, which allowed us
to verify the robustness and generalizability of our
findings. Notably, the performances and trends obtained
from both datasets were strikingly similar, indicating
that our models can effectively generalize across differ-
ent data sources [17]. It is essential to note that the con-
sistency in performance across datasets highlights the
robustness of the model type and architecture. However,
it is imperative to recognize that while the fundamen-
tal model architecture remains consistent, the optimal
parameters vary for each dataset. This nuanced un-
derstanding underscores the model’s adaptability while
emphasizing the importance of fine-tuning parameters
to achieve optimal results for specific datasets.

We strategically selected a diverse set of features in both
the time and frequency domains to address the computa-

Figure 4. UniMiB SHAR dataset. Normalized confusion ma-
trix made averaging the results from the 10 folds with the
CAT algorithm, providing as input raw data (upper panel) or
selected features (lower panel).

tional load associated with using raw accelerometer data
with long time series (i.e., up to tens of seconds). Our
findings demonstrate that these carefully chosen features
capture the salient elements of the 3-axes acceleration
data, enabling accurate classification without sacrificing
computational efficiency [18, 19].

Among the machine learning algorithms evaluated, RF
and CAT emerged as the top performers, yielding ac-
curacies and F1-scores that align with single-test values
reported in prior studies [20]. While the simplicity and
widespread use of SVM in past studies were notable,
our experiments revealed its relative ineffectiveness in
this specific multi-class classification with accelerome-
ter data. Although CAT showed a slight improvement in
accuracy compared to RF, it came at a significant com-
putational cost, being more than 40 times slower. Our
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recommendation leans toward leveraging RF algorithms
for real-world and real-time applications due to their
balanced trade-off between accuracy and efficiency.
However, we acknowledge that the performance of CAT,
optimized for GPUs, warrants re-evaluation with GPU
accelerators to ascertain its true potential [16]. Addi-
tionally, we explored the integration of a meta-machine
learning system (ALL), combining the outputs of RF,
SVM, and CAT, leveraging the confidence levels of
each algorithm. Surprisingly, this approach did not yield
any significant advantage, suggesting that the individual
strengths of RF and CAT were sufficient for the multi-
class classification task at hand.

The two datasets included in our analysis involved
wearing accelerometers in specific locations close to the
waist; this poses practical challenges, potentially leading
to low user compliance. Particularly for the elderly,
consistent placement of devices in specific directions
during daily activities can be difficult. This limitation
is common in cellphone app-based studies. Simple
devices like necklaces with alarm buttons might offer
operational advantages for effective fall detection due
to their ease of use and user-friendliness.

In conclusion, our research highlights the importance of
feature selection and the careful consideration of com-
putational efficiency in multi-class accelerometer data
classification. We contribute valuable insights into the
performance of machine learning algorithms, providing
practitioners with evidence-based recommendations for
real-world applications.
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