

Machine Learning Architectures to Classify Activities of Daily Living and Fall Types From Wearable Accelerometer Data

Alberto Antonietti

The 2023 IEEE Signal Processing in Medicine and Biology Symposium

Introduction

Activities of Daily Living (ADLs):

- self-care
- walking
- running
- going up/down the stairs

Falls

State of the art

- Classification of ADLs and falls based on accelerometer measurements [Pires et al., 2020; Janidarmian et al., 2017, Begala et al., 2012]
- Optimal placement at the hip [Cleland et al., 2013]
- Accuracy in laboratory conditions vs real-world [Liu et al., 2022]

- Comparison of different ML approaches
- Focus on ADL and falls (multiclass classification)
- Real-world data
- Two different open datasets

ADL and Fall Datasets

Smartphone/smartphone-like accelerometers

UniZgFall [Razum et al., 2018] N=16, 7 types of ADL and 3 fall types f_{sample} = 200 Hz, 468 items, unbalanced

UniMiB SHAR [Micucci et al., 2017] N=30, 9 types of ADL and 8 fall types $f_{sample} = 50$ Hz, 1980 items, unbalanced

ADL and Fall Datasets

Table 1. ADLs and fall types categories in UniMiB SHAR dataset.

#	Description	Label
1	From laying on the bed to standing	StandingUpFL
2	From standing to lying on a bed	LyingDownFS
3	From standing to sitting on a chair	StandingUpFS
4	Moderate running	Running
5	From standing to sitting on a chair	SittingDown
6	Climb the stairs moderately	GoingDownS
7	Down the stairs moderately	GoingUpS
8	Normal walking	Walking
9	Continuous jumping	Jumping
10	Fall backward while trying to sit on a chair	FallingBackSC
11	Generic fall backward from standing	FallingBack
12	Falls using strategies to prevent the impact	FallingWithPS
13	Fall forward from standing	FallingForw
14	Fall right from standing	FallingLeft
15	Fall right from standing	FallingRight
16	Falls with contact to an obstacle	HittingObstacle
17	Getting unconscious	Syncope

Μ

Input data

Raw data

5150 x 3 = 25.7 s

3208 x 3 = 64.2 s

Zero-padding

Features

94: 50 in time domain, 44 FFT

#	Description	Acceleration	FFT
1	Mean	\checkmark	\checkmark
2	Standard deviation	\checkmark	\checkmark
3	Average absolute deviation	\checkmark	\checkmark
4	Minimum	\checkmark	\checkmark
5	Maximum	\checkmark	\checkmark
6	Maximum - minimum	\checkmark	\checkmark
7	Median	\checkmark	\checkmark
8	Median absolute deviation	\checkmark	\checkmark
9	Interquartile range	\checkmark	\checkmark
10	Negative values count	\checkmark	\checkmark
11	Positive values count	\checkmark	
12	Number of values above mean	\checkmark	
13	Number of peaks	\checkmark	\checkmark
14	Skewness	\checkmark	\checkmark
15	Kurtosis	\checkmark	\checkmark
16	Energy	\checkmark	\checkmark
17	Average resultant acceleration	\checkmark (1 value)	\checkmark (1 value)
18	Signal magnitude area	\checkmark (1 value)	\checkmark (1 value)

Machine Learning Architectures

SVM – Support Vector Machine RF – Random Forest CAT – CatBoost

ALL – Maximum confidence

Stratified 10-fold cross-validation

Statistical Analysis

Accuracy and multi-class F1 score Training time Confusion matrix

$$F1 - score_i = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

For RF and CAT we analyzed feature importance

Kruskal-Wallis test and post hoc analysis via Dunn's test with Bonferroni correction

Hardware and Software

Ubuntu 22.04.1 LTS Python 3.10.6 sklearn 1.2.2 Catboost 1.1.1

Intel(R) Xeon(R) CPU E5-2690 v3 @2.60 GHz, 16 CPUs, 64 GB RAM

Open code available: <u>https://github.com/alberto-antonietti/ml_accelerometers</u>

Results – UniZgFall

M

Avg Training Time SVM 227.40 s RF 1.79 s CAT 1456.68 s.

Avg Training Time SVM 0.11 s RF 0.42 s CAT 17.71 s.

Results – UniZgFall

Raw data

Features

Results – UniMiB SHAR

Avg Training Time SVM 194.10 s RF 5.34 s CAT 1721.02 s.

Avg Training Time SVM 2.40 s RF 1.76 s CAT 42.67 s.

Results – UniMiB SHAR

Raw data

Features

POLITECNICO MILANO 1863

15 Alberto Antonietti

Explainability

Energy along *y* axis. Features of the *y* axis, as well as frequency features, were more important than the other two axes.

$$E_s \;\;=\;\; \langle x(n), x(n)
angle \;\;= \sum_{n=-\infty}^\infty |x(n)|^2$$

above_mean along y and z axes. Features of the y and z axes were slightly more important, and frequency features were less important.

- Robustness and generalizability
- Features are more informative than raw data
- RF and CAT performed better, RF is less demanding
- Accelerometers placed at waist \rightarrow possible low user compliance

Acknowledgments

Funded by the Project "European Brain ReseArch INfrastructureS-Italy" granted by **European Union** – NextGenerationEU adopted by the Italian Ministry of University and Research, *CUP B51E22000150006*.

Finanziato dall'Unione europea NextGenerationEU

