
979-8-3503-4125-6/23/$31.00 ©2023 IEEE IEEE SPMB 2023 December 3, 2022 

Long Short-Term Memory Framework for Classification of Seizure Types  
Using A Different Format of EEG Signal 

A. Shankar1, D. Chakraborty1, S. Dandapat2 and S. Barma1 

1. Electronics & Communication Eng., Indian Institute of Information Technology Guwahati, India 
2. Electronics & Electrical Eng., Indian Institute of Technology Guwahati, Assam, India 

{anand.shankar, debaleena.chakraborty}@iiitg.ac.in, samaren@iitg.ac.in, shovan@iiitg.ac.in 

Accurate classification of seizure types is crucial for epileptic seizures diagnosis, medication selection, and 
medical care. However, most recent works are mainly surrounded by analysis of seizures, in comparison to 
seizure types. This work proposes, an advanced deep learning (DL) pipeline, long short-term memory 
(LSTM) based framework to classify different types of seizures using multichannel electroencephalogram 
(EEG). This framework concurrently uses time and spectral formats of EEG as input for extraction of 
distinct and pertinent features to classify complex partial, focal non-specific, generalized non-specific, 
myoclonic, tonic-clonic seizures, and seizure-free. For validation, we utilized the Temple University 
Hospital EEG dataset (TUH, v1.5.2). The framework achieved remarkable results with a classification 
accuracy of 97.7%, recall of 98.0%, and weighted F1-score of 98.0%. 

Epileptic seizures are sudden and unprovoked recurrent surges of electrical activity in one or multiple areas 
of the brain [1]. Basically, epileptic seizures are categorized into two groups — focal and generalized 
seizures. The focal seizures originate in one part of the brain and can spread to other parts [1–3]. On the 
other hand, generalized seizures occur in both regions of the brain at the same time [2–4]. Certainly, 
accurate classification of seizure types can play a pivotal role in diagnosis, drugs selection, and effectively 
managing the medical care [1–2]. Among several available tools, EEG is the most efficient, portable, and 
simple to use, making it a mainstream tool for analyzing seizures [1–3]. Moreover, in recent years, the 
emergence of machine learning (ML) based frameworks using features extracted from EEG by employing 
various manual techniques to classify seizure types [1]. For instance, in [4–7] works, several ML models 
have been employed to classify seizure types by using features and statistical descriptors extracted from 
distinct domains of EEG. However, their performance heavily depends on features extraction methods and 
selection. However, these methods may not be ideal for analyzing seizure types due to subtle variations 
among them [5–10]. 

Recent advances in DL algorithms, capable of automatically learning and extracting intricate patterns from 
data, can facilitate the discrimination of seizure types [9–10]. Few recent works, including [3–6, 9–10], 
have utilized various DL models such as convolutional neural networks (CNNs), RNNs, LSTMs, 
autoencoders, hybrid recurrent CNNs, and transfer learning for the classification of seizure types. These 
studies have used 2D images derived from EEG through techniques including Short-time Fourier transform 
(STFT), Markov transition field (MTF), and Gramian angular field (GAF), etc. Most studies have used raw 
EEG signals in different forms, but not in combination. Indeed, concurrently processing EEG in different 
formats is crucial for uncovering hidden insights and essential key features, which can play a vital role in 
seizure type discrimination. In this study, we have utilized time and frequency EEG formats as input 
together with the DL framework to classify seizure-free and five seizure types. 

The framework of the proposed idea is shown in Figure 1. EEG has been decomposed into a specific 
frequency range of 0.5 Hz to 30 Hz, which captures the majority of seizure activities [9–10]. For this 
purpose, a bandpass filter with the appropriate cutoff frequencies has been used [9]. Next, long recorded 
EEG have been split into segments based on a certain duration with 50% overlapping. Importantly, 
segmentation fulfills the foremost need of DL of large and diverse data [1–3]. EEG signal is chaotic in 
nature as well as rich in significant intricate details, making its investigation across diverse domains could 
be highly beneficial for the analysis of seizure types [7–9]. 
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The EEG signal (e (t) = t0, t1, t2, t3, …, tN-1, where, N denotes number of samples), in time-domain provides 
temporal information, key characteristics of hidden patterns, and dynamic statistical transitions [7, 11]. 
Further, utilizing the spectral aspect of EEG for interpreting intricate patterns, the Hartley Transform (HT) 
is considered for its simple and fast computation along with preserving the energy and characteristics of 
original data. 

The HT efficiently transform a time series into its corresponding frequency domain [11]. It is very similar 
to the Fourier transform and shares many characteristics with it, besides complex operations. It provides 
detailed spectral characteristics with lower computational operations and space. In addition, it overcomes 
the processing time and memory limitations of the spectral transformation. The HT of e (t) obtained by (1); 
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The basic architecture of an LSTM is shown in Figure 2. The three 
gates —input gate (IG), output gate (OG), and forget gate (FG) adopt 
the sigmoid function (σ) to control the flow of data. The output (rt) 
(2) of FG determines whether a particular bit of information should 
be kept or forgotten, and obtained by combing current input (pt) and 
previous output (qt-1) in St-1. The output (ut) of IG and tanh function 
layer (Tt) are obtained by (3) and (4) respectively. 

  1 ,t r t t rr W q p b   
 (2) 

  1 ,t u t t uu W q p b     (3) 

  1 ,t T t t TT W q p b   
 (4) 

Further, determination of data stored in the current cell state (St = rt * St-1 + ut * Tt). Then, OG outcome (vt) 
is obtained by (5) and combined with outcome of activation layer (tanh) to determine final output (Ot = vt 
* tanh (St)). W depicts the weight, and br, bu, and bT represent bias of respective gates. 

The detailed pipeline of the proposed network is shown in Figure 3. It includes input, LSTM, dropout, batch 
normalization, affine, and output layers. 

  1 ,t v t t vv W q p b     (5) 

 
Figure 2. The basic pipeline of LSTM. 

 
Figure 1. The pipeline of the proposed idea to discriminate different types of seizure and seizure-free. 

 

 

 

 

 

 

 

Figure 1. The pipeline of the proposed idea to discriminate different types of seizure and seizure-free. 
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For experimental validation, the TUH EEG dataset has been 
used [12]. The EEG signals recorded by a unipolar montage 
having sampling rate of 250 Hz has been considered. The EEG 
recordings of common 19 channels — C3, C4, Cz, Fp1, Fp2, 
F3, F4, Fz, F7, F8, O1, O2, P3, P4, Pz, T3, T4, T5, and T6 
have been used. Table 1 provides the description of the EEG 
dataset, which includes recordings from 32 subjects. 

The EEG signals have been decomposed into the frequency 
range of 0.5 Hz to 30 Hz by Butterworth fifth-order band pass 
filter followed by its spectral transformation by HT. Next, input formats — time domain (R_EEG) and its 
respective spectral (S_EEG) have been standardized by (t – mean) / standard deviation. Now, the data has 
been segmented into 1 sec signal with 50% overlap. Further, input data has been split into a training set 
(80%), a testing set (20%), and 10% of the training samples allocated for validation. Finally, both input 
formats (RS_EEG) have been directly fed into the parallel stacked LSTM framework. Further, concatenated 
features extracted from both inputs, and passed through an affine layer having ReLU and dropout layer, 
followed by an output layer with softmax to classify appropriate seizure types. The Adam (β1 = 0.9, β2 = 
0.99, decay rate = 10–7) and categorical cross-entropy as optimizer and loss function have been used 
respectively. The model use learning rate of 10-7, batch size of 128, and trained for 200 epochs. The model 
performance has been evaluated by accuracy (Ac = (TP + TN) / (TP + FP + FN + TN)), recall (Re = TP / (TP 
+ FN)), and weighted F1–score (F1 = 2 TP / (2 TP + FP + FN)), where, TP and TN denote true positive 
and negative respectively, and FP and FN depict the false positive and negative respectively. In addition, 
individual input format has also been investigated. Figure 4 illustrates the training (Tac) and validation (Vac) 
accuracy, as well as training (Tl) and validation (Vl) loss across epochs. Figure 5 displays the achieved 
classification Ac of 97.7%, Re of 98.0%, and F1 of 98.0%. In addition, the model achieved performance 
metrics, with Ac of 93.8%, Re of 94.0%, and F1 score of 94.0% when using time domain input, and 85.7%, 
86.0%, and 86.0% recorded for spectral domain respectively. 

Table 1. EEG Dataset Description 

Types of Seizure Duration (s) 
Seizure-free(SZF) 1000 

Focal Non-specific (FNS) 1199 
Complex Partial (CPS) 1229 

Generalized Non-specific (GNS) 1205 
Myoclonic (MYS) 1210 
Tonic-clonic (TCS) 1053 

 

 
Figure 3. The proposed framework to classify seizure types is shown. 

 
Figure 4. The Tac, Vac, Tl, and Vl have been obtained by 
model when both formats of EEG have been used. 
 

 
Figure 5. The performance values achieved by model. 
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A comparative study of the proposed idea 
with recent works is summarized in Table 2. 
The results demonstrated that the proposed 
method is superior to others in all aspects. In 
future studies, other formats of EEG signal 
with advanced deep learning frameworks 
could be employed to improve the 
classification of seizure types. 

In conclusion, this study concurrently used 
two input formats of EEG signals: the time 
domain and its spectral representation, based 
on the DL framework to classify five seizure 
types and seizure-free. The validation 
utilized the TUH EEG dataset (v1.5.2) of 
seizure types, resulting in the proposed 
model achieving outstanding classification performance scores. In a comparative analysis, the proposed 
idea exhibited notable classification outcomes. 

REFERENCES 

[1] A. Hezam, et al., “MP-SeizNet: A multi-path CNN Bi-LSTM Network for seizure-type 
classification using EEG,” Biomed Signal Process. Control, vol. 84, pp. 104780–104792, 2023. 

[2] K. Singh, et al., “Two-layer LSTM network based prediction of epileptic seizures using EEG 
spectral features,” Complex and Intelligent Systems, vol. 8, pp. 1–14, Feb 2022. 

[3] Raghu et al., “EEG based multi-class seizure type classification using convolutional neural network 
and transfer learning”, Neur. Net., vol. 124, pp. 202–212, Apr. 2020. 

[4] David, et al., “Neural memory networks for seizure type classification,” IEEE 42nd Annu. Int. Conf. 
Eng. Medicine Biol. Soc., Jan. 2020, pp. 569–575. 

[5] Saputro, et al., “Seizure type classification on EEG signal using support vector machine,” J. Phys.: 
Conf. Ser., vol. 1201, no. 1, pp. 012065–012073, May 2019. 

[6] A. Shankar, S. Dandapat, and S. Barma, “Classification of Seizure Types Based on Statistical 
Variants and Machine Learning,” IEEE 18th India Council Int. Conf., Dec. 2021, pp. 1–6. 

[7] S. Roy, et al. “Seizure type classification using EEG signals and machine learning: Setting a 
benchmark,” IEEE Signal Process. Medicine Biol. Symp., Dec. 2020. pp. 1–6. 

[8] Liu, et al., “Epileptic seizure classification with symmetric and hybrid bilinear models,” IEEE J. 
Biomed. Health Inform., vol. 24, no. 10, pp. 2844–2851, Oct. 2020. 

[9] A. Shankar, et al., “Seizure Type Classification Using EEG Based on Gramian Angular Field 
Transformation and Deep Learning,” 43rd Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 2021, pp. 
3340–3343 

[10] A. Shankar, et al., “Discrimination of Types of Seizure Using Brain Rhythms Based on Markov 
Transition Field and Deep Learning,” IEEE Open J. Instrum. Meas., vol. 1, pp. 1–8, 2022. 

[11] Bracewell, R. N., “Computing with the Hartley transform.” Computers in Physics, vol. 9, no. 4, pp. 
373–379, Jul. 1995. 

[12] I. Obeid and P. Joseph, “The temple university hospital EEG data corpus,” Front. Neuro., vol. 10, 
pp. 196–200, May 2016. 

Table 2. A Comparative Study 

Works Input 
Formats 

ML  
models NST 

Performance (%) 
Ac F1 Re 

[3] STFT, 2DI CNN 8 84.1 - - 
[4] FFT P-NMN 7 - 94.0 - 

[8] FFT 
CNN 

8 
82.2 72.2 - 

AlexNet 84.1 - - 
[9] GAF, 2DI CNN 5 84.2 84.0 - 

[10] MTF, 2DI CNN 5 91.1 91.0 - 
Proposed 

work HIFs LSTM 6 97.7 98.0 98.0 

Note: NST: total number of seizure types, P-NMN: plastic neural 
memory network, HIFs: hybrid input formats, 2DI: 2D images, MTF: 
Markov transition field, GAF: Gramian angular field.  
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• Accurate classification of seizure types is crucial for
epileptic seizures diagnosis, medication selection,
and medical care.

• Most recent reported works are mainly surrounded
by analysis of seizures, in comparison to seizure
types.

• This work proposes, an deep learning (DL) pipeline,
long short-term memory (LSTM) based framework to
classify different seizure types using multichannel
electroencephalogram (EEG).

• The proposed DL framework concurrently uses time
and spectral formats of EEG to classify complex
partial, focal non-specific, generalized non-specific,
myoclonic, tonic-clonic seizures, and seizure-free.

• For validation, the Temple University Hospital EEG
dataset (TUH, v1.5.2). Has been used.

• The framework achieved remarkable results with a
classification accuracy of 97.7%, recall of 98.0%, and
weighted F1-score of 98.0%.

Figure 1. The pipeline of the proposed idea to discriminate different types of
seizure and seizure-free using EEG signals.

• EEG signal (e (t) = t0, t1, t2, t3, …, tN-1, where, N denotes number of samples),
is rich in significant intricate details, making its study across diverse
domains could be highly beneficial for the analysis of seizure types.

• In time-domain, it provides temporal information, characteristics of hidden
patterns, & dynamic transitions.

• To interpret the spectral aspect of EEG, the Hartley Transform (HT) is
considered, which is obtained by (1);

• It provides detailed spectral characteristics with lower computational
operations and space.

• The EEG signal has been decomposed into a specific frequency range of 0.5
Hz to 30 Hz.

• Long recorded EEG signals have been split into segments based on a
certain duration with 50% overlapping for further processing.

EEG Dataset
• For validation, the TUH EEG dataset including EEG

signals recorded by a unipolar montage having
sampling rate of 250 Hz has been considered.

• The EEG recordings of common 19 channels — C3,
C4, Cz, Fp1, Fp2, F3, F4, Fz, F7, F8, O1, O2, P3, P4,
Pz, T3, T4, T5, and T6 have been used.

• Table 1 provides the description of the EEG dataset,
which includes EEG recordings of total 32 subjects.

Table 1. EEG Dataset Description

Experimental Setup
• The EEG signals have been decomposed into the frequency range of 0.5 Hz to 30 Hz by Butterworth fifth-order band 

pass filter followed by its spectral transformation by HT. 
• Input formats — time domain (R_EEG) and its respective spectral (S_EEG) have been standardized.
• The data has been segmented into 1 sec signal with 50% overlap. 
• Input data has been split into a training set (80%), a testing set (20%), and 10% of the training samples for validation. 
• Both input formats (RS_EEG) have been directly fed into the parallel stacked LSTM framework. 
• The Adam (β1 = 0.9, β2 = 0.99, decay rate = 10–7) and categorical cross-entropy as optimizer and loss function have 

been used respectively. The model use learning rate of 10–7, batch size of 128, and trained for 200 epochs.

• .
.Outcomes

• The model performance has been evaluated by accuracy Ac, recall Re and weighted F1–score.
• Figure 4 illustrates the training (Tac) and validation (Vac) accuracy, as well as training (Tl) and validation (Vl) loss across epochs. Figure 5 displays the

achieved classification Ac of 97.7%, Re of 98.0%, and F1 of 98.0%.
• The model achieved performance metrics, with Ac of 93.8%, Re of 94.0%, and F1 score of 94.0% when using time domain input (R_EEG), and 85.7%, 86.0%,

and 86.0% recorded for spectral domain (S_EEG) respectively.
• A comparative study of the proposed idea with recent works is summarized in Table 2. The results demonstrated that the proposed method is superior to

others in all aspects.

Conclusion
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Method: The pipeline of the proposed idea2

3

Types of Seizure Duration (s)
Seizure-free(SZF) 1000

Focal Non-specific (FNS) 1199
Complex Partial (CPS) 1229

Generalized Non-specific (GNS) 1205
Myoclonic (MYS) 1210

Tonic-clonic (TCS) 1053
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Figure 2. The proposed framework to classify seizure types is shown.

5

Works Input 
Formats

ML 
models NST

Performance (%)
Ac F1 Re

[3] STFT, 2DI CNN 8 84.1 - -
[4] FFT P-NMN 7 - 94.0 -

[8] FFT CNN 8 82.2 72.2 -
AlexNet 84.1 - -

[9] GAF, 2DI CNN 5 84.2 84.0 -
[10] MTF, 2DI CNN 5 91.1 91.0 -

Proposed 
work HIFs LSTM 6 97.7 98.0 98.0
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Figure 4. The Tac, Vac, Tl, and Vl have been
obtained by model when both formats of
EEG have been used.

Figure 5. The performance values attained 
by model.

Table 2. A Comparative Study

Note: NST: number of seizure types, P-NMN: plastic neural memory network, HIFs: hybrid
input formats, 2DI: 2D images, MTF: Markov transition field, GAF: Gramian angular field.

• This study concurrently used two input
formats of EEG : the time domain and its
spectral domain, for an DL framework to
classify five seizure types.

• The results validated that the proposed
idea recorded outstanding performance
scores.

• In a comparative analysis, the proposed
idea exhibited notable outcomes.

• In future studies, other formats of EEG
signals with advanced DL frameworks
could be employed to improve the
classification of seizure types.
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