Jesse Killough
Signals and Systems

Problem 5.45
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Convoluted Signal
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Matlab Code

n=(0:1:100);

x=1+sin((pi/4)*n)+sin((pi/2)*n);
h=1.9*%(-.9).”n;

y=conv(x,h);

z=1+1.08*sin((pi1/4)*n+0.37)+1.41*sin((pi/2)*n+0.733);

plot(y,'b");



Analytical Solution )
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Matlab Code

n=(0:1:100);

x=1+sin((pi/4)*n)+sin((pi/2)*n);

h=1.9*%(-.9).”n;

y=conv(x,h);
z=1+1.08*sin((pi/4)*n+0.37)+1.41*sin((pi/2)*n+0.733);
plot(z,'t");



The output response y[n] which results from the input response x[n] is given by the
equation

vln] = x[n] % hin] (1)

where h[n] is the unit-pulse response. The product of the DTFT’s of the two signals h[®]
and x[w] is equal to the DTFT of a convolution of the two signal h[n] and x[n]. If you take the
DTFT of the two sides, this gives the equation

Viw = X(w) x Hlw) )

where X (o) is the DTFT of the input x[n] and Y () is the DTFT of the output y[n]. H() is the
frequency response function of the system. The DTFT of the unit-pulse response h[n] is equal to
the frequency response of the system. The magnitude [H(w)| is the magnitude function of the
system and <H(m) is the phase function of the system.

The analytical solution involved taking the DTFT of the input signal x[n] and the unit-
pulse response h[n]. This allows me to multiply the DTFT of the input signal X(®) and the
frequency response H(w) to get the DTFT Y(w). Then, I took the inverse DTFT of Y(w) to get

y[n].

Using MATLAB made the math really easy. I took the input signal x[n] and the unit-
pulse response h[n] and convoluted the signals together. Also, I plotted the final analytical
signal in MATLAB. By comparing the pictures, you can see that the pictures are almost
identical except for the decay on the convoluted signal. The decay is caused by the ending of the
signal.



