Part 1: Analytical Solution

Consider the discrete-time system given by the input/output difference equation:

$$
y[n+1]=+0.9 y[n]=1.9 x[n+1]
$$

The impulse response is given by $h[n]=1.9(-0.9)^{n} u[n]$.
Rewriting the original equation yields:

$$
h[n+1]+0.9 h[n]=1.9 \delta[n+1]
$$

Substitute $\mathrm{h}[\mathrm{n}]$ into the above equation:

$$
\begin{gathered}
1.9(-0.9)^{n+1} u[n+1]+0.9\left[(1.9)(-0.9)^{n} u[n]\right. \\
1.9(-0.9)^{n+1}(u(n+1)-u(n))
\end{gathered}
$$

Impulse $=0$ for all n , except $\mathrm{n}=-1$

$$
(-0.9)^{n+1} \rightarrow 1
$$

Proves:

$$
\begin{aligned}
& u(n+1)-u(n)=\delta(n+1) \Rightarrow 1.9 \delta[n+1] \\
& h[n]=1.9(-0.9)^{n} u[n]
\end{aligned}
$$

Compute the output response $y[n]$ to an input of:

$$
x[n]=1+\sin (\pi n / 4)+\sin (\pi n / 2)
$$

$$
y[n]=|H(0)|+|H(t)| \sin [(t) n+\angle H(t)]+|H(z)| \sin [(z) n+\angle H(z)
$$

Since:

$$
h[n]=1.9(-0.9)^{n} u[n]
$$

Then:

$$
\begin{gathered}
H(\omega)=\frac{1.9}{1+0.9 e^{-j \omega}}=\frac{1.9 e^{j \omega}}{e^{j \omega}+0.9} \\
H(0)=\frac{1.9 e^{j 0}}{e^{j 0}+0.9}=\frac{1.9}{1+0.9}=1 \\
H\left(\frac{\pi}{4}\right)=\frac{1.9 e^{j(\pi / 4)}}{e^{j(\pi / 4)}+0.9}=\frac{1.9\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)}{\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)+0.9}=\frac{1.9(0.7071+j 0.7071)}{(0.7071+j 0.7071)+0.9}=\frac{1.9 \angle 45^{0}}{1.7558 \angle 23.75^{0}} \\
=1.082 \angle 21.25^{0}=1.082 \angle \frac{(21.25)(\pi)}{180} \mathrm{rad}=1.802 \angle 0.371 \mathrm{rad}
\end{gathered}
$$

$$
\begin{aligned}
& H\left(\frac{\pi}{2}\right)=\frac{1.9 e^{j(\pi / 2)}}{e^{j(\pi / 2)}+0.9}=\frac{1.9\left(\cos \frac{\pi}{2}+j \sin \frac{\pi}{2}\right)}{\left(\cos \frac{\pi}{2}+j \sin \frac{\pi}{2}\right)+0.9}=\frac{1.9(0+j 1)}{(0+j 1)+0.9}=\frac{j 1.9}{0.9+j 1} \\
& =1.41 \angle 41.99^{0}=1.41 \angle \frac{(41.99)(\pi)}{180} \mathrm{rad}=1.41 \angle 0.733 \mathrm{rad}
\end{aligned}
$$

Plug these values back into the equation stated earlier:

$$
y[n]=|H(0)|+\left|H\left(\frac{\pi}{4}\right)\right| \sin \left[\left(\frac{\pi}{4}\right) n+\angle H\left(\frac{\pi}{4}\right)\right]+\left|H\left(\frac{\pi}{2}\right)\right| \sin \left[\left(\frac{\pi}{2}\right) n+\angle H\left(\frac{\pi}{2}\right)\right]
$$

The answer is then given by:

$$
y[n]=1+1.082 \sin \left[\frac{\pi}{4} n+0.371\right]+1.41 \sin \left[\frac{\pi}{2} n+0.733\right]
$$

This answer can be checked in Matlab.

Part 2: Matlab Code and Graphs

The first part of the code is to show how Matlab can check my calculator values for H :
EDU>> syms j;
EDU>> $\mathrm{h}=[1.9 * \exp (\mathbf{j} * 0)] /\left[\exp \left(\mathrm{j}^{*} \mathbf{0}\right)+\mathbf{0 . 9}\right]$
$\mathrm{h}=$

1

The next part of the code is to obtain the solution graphically using Matlab:
EDU>> \% Matlab Code for Extra Credit
EDU $\gg \%$ the first step is to declare ' n ' as a range of integers
EDU>> n=0:1:30;
EDU>> \% declare the input used to compute the output response
EDU>> $\mathrm{x}=1+\sin ((\mathrm{p} / 4) * \mathbf{n})+\sin ((\mathrm{p} / 2) * \mathbf{n})$;
EDU>> \% formulate a for loop in order to loop a range of values through the impulse response
EDU>> for $\mathrm{s}=1: 30$;
$h(s)=1.9^{*}(-.9)^{\wedge}(\mathrm{s}-1)$;
end;
EDU>> \% plot the input equation in a discrete plot
EDU>> stem(x)
EDU \gg \% plot the impulse response in a discrete plot
EDU>> stem(h)
EDU>> \% convolute the two equations above and name them a variable for easy access
EDU>> c=conv(x,h);
EDU>> \% plot the convolution in a discrete plot
EDU>> stem(c)
EDU>> \% analytical solution obtained from calculations
EDU>> $\mathbf{y}=\mathbf{1 + 1 . 0 8 2} * \sin ((\mathrm{pi} / 4) * \mathrm{n}+0.371)+\mathbf{1 . 4 1} * \sin ((\mathrm{p} / 2) * \mathrm{n}+0.733)$;
EDU>> \% plot the solution in a discrete plot
EDU>> stem(y)
EDU>> \% use the hold function to display both graphs on the same plot (convolution and analytical)
EDU>> hold
Current plot held
EDU>> stem(c)

Figure 3 displays the convolution of the impulse function and input equation from figures 1 and 2. Figure 4 displays the analytical solution. Both of the graphs were plotted together in figure 5 to compare. There are very small differences in the magnitudes of the points. These differences could be contributed to a small error in calculations. Furthermore, the x axis is different for each plot. Figure 3 only goes to 35 while figure 4 goes to 60 . When trying to change these values, errors started occurring so I decided to leave it like this. Basically, Matlab confirmed that my analytical calculation was correct.

Figure 1: Input Equation: $x=1+\sin ((p i / 4) * n)+\sin ((p i / 2) * n)$

Figure 2: Impulse Response: $\mathrm{h}[\mathrm{n}]=1.9 *(-.9)^{\wedge}(\mathrm{n}) * \mathrm{u}[\mathrm{n}]$

Figure 3: Convolution of the Impulse Response and Input Equation

Figure 4: Analytical Solution y[n]

Figure 5: Analytical Solution from Figure 4 and Convolution from Figure 3

