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Problem Procedure 

 

The problem 5.45 from page 277-278 says to consider the discrete-time system given by 

the input/output difference equation: 
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From part (a) and part (b) of the problem, we are able to prove that the impulse response 

satisfies equation (1.1).  Using part (b), we compute the Discrete-Time Fourier Transform 

(DTFT) of the impulse response proven in part (a).  This impulse response and its DTFT 

are as follows: 
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With this information, part (c) of problem 5.45 then asks to compute the output response 

y[n] to an input of the following: 
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Since the input provided is linear, in can be split into three separate parts and then 

computed separately.  So now the three equations to work with are seen below: 
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According to theory, the output response y[n] resulting from the application of input x[n] 

can be determined using the following equation: 
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Since we have equation (1.3), we can compute the output response if we obtain X(Ω) and 

apply it to equation (1.8).  Therefore, the DTFT will need to be applied to all three 

components (1.5, 1.6, and 1.7) of the original input from (1.4).  Once X(Ω) for each 

component has been obtained, it and H(Ω) are plugged into equation (1.8), H(Ω) is 

applied to the input of the system to generate the output.  After H(Ω) has been applied to 

the system, the inverse DTFT is performed to obtain y[n].  The work for each component 

is shown below. 
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However, there are several essential equations required during the computation of each 

components.  In order to compute H(Ω) and actually proceed in the computation, the 

following equation: 

 

 )()()()( ccHcH +Ω−=+ΩΩ δδ    (1.9) 

 

In these examples, there will consistently exist a 2πk in the c variable.  This 2πk can be 

disregarded due to the fact that H(Ω) is periodic with period 2π.  So it can be observed 

that: 

 

 )()2( OO HkH Ω−=+Ω− π     (1.10) 

 

Once an numerical value exists within the impulse response function, the value can either 

be applied straight to the DTFT equation of the impulse response function or the 

following equation can be used in respect to the magnitude and angle of the impulse 

response: 
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The transforms used in computing the output from each input component are as follows: 
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The following is the computation from x1[n] to y1[n].  At the beginning the transform 

from equation (1.12) is used to transform x1[n]. 
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From this point in the computation, we use equations (1.9, 1.10) to determine that in this 

case from computing the first part that H(Ω) = H(0). 
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Next the second component x2[n] is computed the same way except with a different 

transform (from equation 1.13), and an additional equation: 
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In order to compute the impulse response, equation (1.11) allows the expansion of H(Ω) 

into a exponent form: 
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Finally, the final computation for x3[n] is as follows: 
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After computing all of the output components, all three of them can be computed to 

create the overall output response from the function, therefore generating the equation as 

seen below: 
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MATLAB Simulation 

 

In order to verify the solution obtained from the previous section, a MATLAB simulation 

should be run.  The method established for verifying the solution is to compute the 

convolution of the input signal and the impulse response signal using MATLAB, and 

then graphing equation (1.14) and checking if they overlap. 

 

The following is the block of code used to perform the convolution and graph both sets of 

data. 

 

 
Figure 1 – MATLAB Code to Simulate the output response 

% problem.m - Signals & Systems Problem 5.45c 
% Last modified: March 27, 2009 

  
% Set up the data range for n and compute x[n] 
n=0:1:199; 
x=1+sin(pi/4*n)+sin(pi/2*n); 

  
% Run the data range for k and compute h[k] 
for k=1:200; 
    h(k)=1.9*(-0.9)^(k-1); 
end 

  
% Perform x[n]*h[k] (convolution) and store it to z.  Also, 
% store equation 1.14 to y. 
z=conv(x,h); 
y=1+1.08*sin(pi/4*n+0.37)+1.41*sin(pi/2*n+0.73); 

  
% Graph y in red and z with dashed lines and square points 
stem(y,'r'); 
hold 
stem(z,'--s'); 
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One important mention of the results for graphing the convolution of the two signals is 

that since the convolution is not done for infinity samples, the graph eventually decays to 

0.  Would we be able to graph an infinite convolution, the decay at the end of the graph 

would not exist. 

 

 
Figure 2 – Simulation Results for both the convolution and equation (1.14) 

 

Figure 2 above validates that equation (1.14) does match the simulation performed by 

MATLAB.  The two graphs are laid over each other, with the calculated convolution 

being represented by blue dashed lines with squares for plot points, and equation (1.14) 

being indicated in red and with circles for plot points. 

 

At the beginning of the dataset there are some slot variations between the simulation and 

the plotted equation, but these variations quickly smooth out. 


