
1

Fourier Analysis of Discrete-Time Systems

Gary W. Weasel, Jr (gww44@msstate.edu)

ECE 3163, Section 01

2

Problem Procedure

The problem 5.45 from page 277-278 says to consider the discrete-time system given by

the input/output difference equation:

]1[9.1][9.0]1[+=++ nxnyny (1.1)

From part (a) and part (b) of the problem, we are able to prove that the impulse response

satisfies equation (1.1). Using part (b), we compute the Discrete-Time Fourier Transform

(DTFT) of the impulse response proven in part (a). This impulse response and its DTFT

are as follows:

][)9.0(9.1][nunh n
−= (1.2)

9.0

9.1
)(

+
=Ω

Ω

Ω

j

j

e

e
H (1.3)

With this information, part (c) of problem 5.45 then asks to compute the output response

y[n] to an input of the following:

)
2

sin()
4

sin(1][
nn

nx
ππ

++= (1.4)

Since the input provided is linear, in can be split into three separate parts and then

computed separately. So now the three equations to work with are seen below:

 1][1 =nx (1.5)

)
4

sin(][2

n
nx

π
= (1.6)

)
2

sin(][3

n
nx

π
= (1.7)

According to theory, the output response y[n] resulting from the application of input x[n]

can be determined using the following equation:

)()()(][][][ΩΩ=Ω↔∗= XHYnxnhny (1.8)

Since we have equation (1.3), we can compute the output response if we obtain X(Ω) and

apply it to equation (1.8). Therefore, the DTFT will need to be applied to all three

components (1.5, 1.6, and 1.7) of the original input from (1.4). Once X(Ω) for each

component has been obtained, it and H(Ω) are plugged into equation (1.8), H(Ω) is

applied to the input of the system to generate the output. After H(Ω) has been applied to

the system, the inverse DTFT is performed to obtain y[n]. The work for each component

is shown below.

3

However, there are several essential equations required during the computation of each

components. In order to compute H(Ω) and actually proceed in the computation, the

following equation:

)()()()(ccHcH +Ω−=+ΩΩ δδ (1.9)

In these examples, there will consistently exist a 2πk in the c variable. This 2πk can be

disregarded due to the fact that H(Ω) is periodic with period 2π. So it can be observed

that:

)()2(OO HkH Ω−=+Ω− π (1.10)

Once an numerical value exists within the impulse response function, the value can either

be applied straight to the DTFT equation of the impulse response function or the

following equation can be used in respect to the magnitude and angle of the impulse

response:

)(

)(

)()(

)()(

O

O

Hj

OO

Hj

OO

eHH

eHH

Ω∠−

Ω∠

⋅Ω=Ω−

⋅Ω=Ω
 (1.11)

The transforms used in computing the output from each input component are as follows:

)2(2,1 kt ππδ −Ω↔∞<<∞− (1.12)

 ∑
∞

−∞=

ΘΘ−
−Ω−Ω−−Ω+Ω↔Θ+Ω

k

O

j

O

j

O kekejn)]2()2([)sin(πδπδπ (1.13)

The following is the computation from x1[n] to y1[n]. At the beginning the transform

from equation (1.12) is used to transform x1[n].

∑

∑

∞

−∞=

∞

−∞=

−Ω⋅Ω⋅=Ω

Ω⋅Ω=Ω

−Ω⋅=Ω

=

k

k

kHY

HXY

kX

nx

)2()(2)(

)()()(

)2(2)(

1][

1

11

1

1

πδπ

πδπ

From this point in the computation, we use equations (1.9, 1.10) to determine that in this

case from computing the first part that H(Ω) = H(0).

4

1][

)2(2)(

)2()0(2)(

1

1

1

=

−Ω⋅=Ω

−Ω⋅⋅=Ω

∑

∑

∞

−∞=

∞

−∞=

ny

kY

kHY

k

k

πδπ

πδπ

Next the second component x2[n] is computed the same way except with a different

transform (from equation 1.13), and an additional equation:

∑

∑

∑

∞

−∞=

∞

−∞=

∞

−∞=

−−Ω−−+Ω−=Ω

−−ΩΩ−−+ΩΩ=Ω

ΩΩ=Ω

−−Ω−−+Ω=Ω

=

k

k

k

kHkHjY

kHkHjY

HXY

kkjX

n
nx

)]2()()2()([)(

)]2()()2()([)(

)()()(

)]2()2([)(

)
4

sin(][

44442

442

22

442

2

πδπδπ

πδπδπ

πδπδπ

π

ππππ

ππ

ππ

In order to compute the impulse response, equation (1.11) allows the expansion of H(Ω)

into a exponent form:

)37.0
4

sin(08.1][

))
4

(
4

sin()(][

)]2()()2()([)(

2

42

4

)
4

(

44

)
4

(

42

+⋅=

∠+=

−−Ω−−+Ω=Ω ∑
∞

−∞=

∠∠−

nny

HnHny

keHkeHjY
k

HjHj

π

ππ

πδπδπ

π

π

π

ππ

π

π

Finally, the final computation for x3[n] is as follows:

∑

∑

∞

−∞=

∞

−∞=

−−ΩΩ−−+ΩΩ=Ω

ΩΩ=Ω

−−Ω−−+Ω=Ω

=

k

k

kHkHjY

HXY

kkjX

n
nx

)]2()()2()([)(

)()()(

)]2()2([)(

)
2

sin(][

223

33

223

3

πδπδπ

πδπδπ

π

ππ

ππ

∑
∞

−∞=

−−Ω−−+Ω−=Ω

k

kHkHjY)]2()()2()([)(
22223 πδπδπ ππππ

5

)73.0
2

sin(41.1][

))
2

(
2

sin()(][

)]2()()2()([)(

3

23

2

)
2

(

22

)
2

(

23

+⋅=

∠+=

−−Ω−−+Ω=Ω ∑
∞

−∞=

∠∠−

nny

HnHny

keHkeHjY
k

HjHj

π

ππ

πδπδπ

π

π

π

ππ

π

π

After computing all of the output components, all three of them can be computed to

create the overall output response from the function, therefore generating the equation as

seen below:

)73.0
2

sin(41.1)37.0
4

sin(08.11][+⋅++⋅+= nnny
ππ

 (1.14)

MATLAB Simulation

In order to verify the solution obtained from the previous section, a MATLAB simulation

should be run. The method established for verifying the solution is to compute the

convolution of the input signal and the impulse response signal using MATLAB, and

then graphing equation (1.14) and checking if they overlap.

The following is the block of code used to perform the convolution and graph both sets of

data.

Figure 1 – MATLAB Code to Simulate the output response

% problem.m - Signals & Systems Problem 5.45c
% Last modified: March 27, 2009

% Set up the data range for n and compute x[n]
n=0:1:199;
x=1+sin(pi/4*n)+sin(pi/2*n);

% Run the data range for k and compute h[k]
for k=1:200;
 h(k)=1.9*(-0.9)^(k-1);
end

% Perform x[n]*h[k] (convolution) and store it to z. Also,
% store equation 1.14 to y.
z=conv(x,h);
y=1+1.08*sin(pi/4*n+0.37)+1.41*sin(pi/2*n+0.73);

% Graph y in red and z with dashed lines and square points
stem(y,'r');
hold
stem(z,'--s');

6

One important mention of the results for graphing the convolution of the two signals is

that since the convolution is not done for infinity samples, the graph eventually decays to

0. Would we be able to graph an infinite convolution, the decay at the end of the graph

would not exist.

Figure 2 – Simulation Results for both the convolution and equation (1.14)

Figure 2 above validates that equation (1.14) does match the simulation performed by

MATLAB. The two graphs are laid over each other, with the calculated convolution

being represented by blue dashed lines with squares for plot points, and equation (1.14)

being indicated in red and with circles for plot points.

At the beginning of the dataset there are some slot variations between the simulation and

the plotted equation, but these variations quickly smooth out.

