Problem 5.45 (c) in Fundamentals of Signals and Systems asks for the response, y[n], of a discrete time system given the input $x[n]=1+\sin ((л / 4) n)+\sin ((л / 2) n)$ and the impulse response $\mathrm{h}[\mathrm{n}]=1.9(-0.9)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$. I first noted that the response of a system can be computed by taking the convolution of the input, $\mathrm{x}[\mathrm{n}]$, and the impulse response, $\mathrm{h}[\mathrm{n}]$. I then found equation 5.65 in section 5.5.1 on page 250 in the text and decided that this was an appropriate method of solution for this problem.
$\mathrm{y}[\mathrm{n}]=\mathrm{A}\left|\mathrm{H}\left(\Omega_{0}\right)\right| \cos \left(\Omega_{0} \mathrm{n}+\theta+<\mathrm{H}\left(\Omega_{0}\right)\right), \mathrm{n}=0, \pm 1, \pm 2, \ldots$
I computed $\mathrm{H}(\Omega)$ by taking the Discrete Time Fourier Transform of $\mathrm{h}[\mathrm{n}]$. Then, I considered that $\mathrm{y}[\mathrm{n}]$ is equal to the sum of responses to $x_{1}[n]=1, x_{2}[n]=\sin ((\pi / 4) n)$, and $x_{3}[n]=\sin ((\pi / 2) n)$. Next, I found the magnitude and phase angle of $\mathrm{H}\left(\Omega_{0}\right)$ for $\Omega_{0}=0$, л/4, and $\pi / 2$. Using equation 5.65 and considering that A is 1 for $x_{1}[n], x_{2}[n]$, and $x_{3}[n]$ I proceeded to compute the response to the system, $y[n]$. Finally, I arrived at the following solution:
$\mathrm{y}[\mathrm{n}]=1+1.08 \sin ((\Omega / 4) \mathrm{n}+0.371)+1.41 \sin ((\Omega / 2) \mathrm{n}+0.733)$
I verified this solution by writing a MATLAB script that computes the response, $\mathrm{y}[\mathrm{n}]$, by taking the convolution ($\operatorname{conv}(x[n], h[n]))$ of $x[n]$ and $h[n]$, plots it (using stem $(y[n])$), and then plots the response that I obtained using equation 5.65 for comparison. The MATLAB script arbitrarily generates a vector of integers to represent n from 0 to 200. It then implements $x[n]$ using this n vector and implements $\mathrm{h}[\mathrm{n}]$ using a for loop. After that It computes the response, $\mathrm{y}[\mathrm{n}]$, using the conv function to take the convolution of $x[n]$ and $h[n]$. Finally, it plots the response computed in the script and then the response that I determined analytically using the subplot and stem functions. The plots of the two system responses is shown below.

Stem plots of the MATLAB response (top) and analytical response (bottom)

