Cody Griffin (crg121)
ECE 3163 - Signals and Systems
March 27, 2009

Figure 1.1: My handwritten work to compute the output y [n] when $x[n]$ is the input to the given difference equation. In the first step, I showed how the given $h[n]$, the impulse response to the difference equation, is verified. This was part a of question 5.45. Secondly, I computed the DTFT of h[n] to get $h(\Omega)$, the impulse response in the frequency domain. In the third step, I calculated the DTFT of $x[n]$ to get $x(\Omega)$. In step four, I multiplied $x(\Omega)$ and $h(\Omega)$ to compute $y(\Omega)$. This multiplication in the frequency domain is equivalent to the convolution in the time domain. The next step is the longest step of the process. I began by computing the inverse DTFT of $y(\Omega)$ to get $y[n]$. Once I had the format of $y[n]$, I had to finish the equation by computing $\mathrm{H}(\Omega)$ at the specified frequencies. I computed $\mathrm{H}(0), \mathrm{H}(\pi / 4)$, and $H(\pi / 2)$. I then simply had to calculate the angles of $H(\pi / 4)$ and $H(\pi / 2)$ to complete the equation for $y[n]$. Putting it all together in step $6, y[n]=1+1.082 \sin (\pi n / 4+0.371)+1.412 \sin (\pi n / 2+0.733)$.

Figure 1.2: $\mathrm{h}[\mathrm{n}]=1.9(-0.9)^{\mathrm{n}} u[\mathrm{n}]$: The impulse response to the given difference equation.

Figure 1.3: $x[n]=1+\sin (\pi n / 4)+\sin (\pi n / 2)$

Figure 1.4: MATLAB $y[n]$: The output response of the given difference equation to the input $\mathrm{x}[\mathrm{n}]$.

Figure 1.5: Theoretical y[n]

```
>> n = 0:1:50;
>> h = 0:1:50;
>> x = 0:1:50;
>> a = 0:1:100;
>> for j = 1:51,
h(j) = 1.9*(-0.9)^(j-1);
x(j) = 1+sin(0.25*pi()*(j-1))+\operatorname{sin}(0.5*pi()*(j-1));
n(j) = (j-1);
end;
>> y = conv(x,h);
>> stem(n,x);
>> xlabel('n');
>> ylabel('x[n]');
>> stem(n,h);
>> xlabel('n');
>> \nablalabel('h[n]');
>> stem(y);
>> xlabel('n');
>> ylabel('y[n]');
>> for j = 1:101,
a(j) = 1+1.082*sin(pi()/4*(j-1)+.371)+1.412*sin(pi()/2*(j-1)+.733);
end;
>> stem(a);
>> xlabel('n');
>> 7label('a[n]');
```

Figure 1.6: MATLAB Code. I began by declaring arrays to hold the values of $\mathrm{h}[\mathrm{n}]$ and $\mathrm{x}[\mathrm{n}]$. I also declared an array to hold my theoretical solution, $a[n]$. I then used a for loop to populate the arrays with the values of $h[n]$ and $x[n]$ for n from 0 to 50 for a total of 51 values in each array. The plots of $h[n]$ and $\mathrm{x}[\mathrm{n}]$ can be seen in Figure 1.2 and 1.3 respectively. Notice the $u[\mathrm{n}]$ is disregarded in the $\mathrm{x}[\mathrm{n}]$ equation because it is zero for all negative values of n. Then I computed the convolution of $h[n]$ with $\mathrm{x}[\mathrm{n}]$ which gives the output response $\mathrm{y}[\mathrm{n}]$ (Figure 1.4). I finally populated the array a[n] with my theoretical values with n ranging from 0 to 100 and plotted it (Figure 1.5).

Conclusion:

From my handwritten work and my MATLAB simulation, it can be seen that $\mathrm{y}[\mathrm{n}]$ is periodic. It is periodic with period $n=8$ as seen in Figure 1.5. This is because the input $x[n]$ is periodic with period $n=8$ as seen in Figure 1.3. The difference between the graph of my analytical solution and my MATLAB solution is that the MATLAB simulation does not take into consideration that $x[n]$ continues to $n=$ infinity. In MATLAB, my samples of $x[n]$ and $h[n]$ are finite so the convolution of the two signals eventually decays to zero. In the real world with an $x[n]$ that continues infinitely, my analytical solution holds true. Notice that the MATLAB simulation of $\mathrm{y}[\mathrm{n}]$ does not seem to level out until a few periods into the convolution. This is because the discrete convolution is really a summation that approaches my analytical value as $h[n]$ goes to zero. $h[n]$ visibly goes to zero at approximately $n=32$ (or 4 periods of $x[n]$) and it can be seen that $y[n]$ has approximately approached its limit after 4 periods. In conclusion, my MATLAB simulation clearly shows that the output $y[n]$ of the difference equation when the input is $x[n]$ is the convolution of $\mathrm{h}[\mathrm{n}]$, the impulse response of the difference equation, with $\mathrm{x}[\mathrm{n}]$.

