Brandon Hoda

Test two extra credit
Signals and Systems
Dr Joseph Picone
March 26, 2009

Analytical Solution:

The solution was not so bad once I got it setup and realized I had to find $\mathrm{H}(\Pi / 4)$ and $\mathrm{H}(п$ /2). By using equation (5.63)

$$
Y(\Omega)=\sum_{k=-\infty}^{\infty} A \pi\left[H\left(-\Omega_{0}+2 \pi k\right) e^{-j \theta} \delta\left(\Omega+\Omega_{0}-2 \pi k\right)+H\left(\Omega_{0}+2 \pi k\right) e^{j \theta} \delta\left(\Omega-\Omega_{0}-2 \pi k\right)\right]
$$

to get a start. In addition, since $\mathrm{h}[\mathrm{n}]$ is real valued, $|\mathrm{H}(-\Omega)|=|\mathrm{H}(\Omega)|$ and $<\mathrm{H}(-\Omega)=-<\mathrm{H}(\Omega)$, and thus the polar forms of $\mathrm{H}\left(-\Omega_{0}\right)$ and $\mathrm{H}\left(\Omega_{0}\right)$ are given by

$$
H\left(-\Omega_{0}\right)=\left|H\left(\Omega_{0}\right)\right| e^{-j \angle H\left(\Omega_{0}\right)} _ \text {and } _H\left(\Omega_{0}\right)=\left|H\left(\Omega_{0}\right)\right| e^{j \angle H\left(\Omega_{0}\right)}
$$

Then equation (5.63) above, after some further deduction becomes
$y[n]=A\left|H\left(\Omega_{0}\right)\right| \cos \left(\Omega_{0} n+\theta+\angle H\left(\Omega_{0}\right)\right), \quad n=0, \pm 1, \pm 2 \ldots$

I know the equation uses cos, however I could only get the solution to come out right using \sin.

```
Matlab Code:
>> n=0:1:30;
>> x=1+\operatorname{sin}((pi/4)*n)+\operatorname{sin}((pi/2)*n);
>> for k=1:16;
>> for k=1:16;
h(k)=1.9*(-.9)^(k-1);
end;
>> z=conv(x,h);
>> stem(z)
>> y=1+1.08*sin((pi/4)*n+.37)+1.41*\operatorname{sin}((\textrm{pi}/2)*\textrm{n}+.73);
>> stem(y)
>> stem(y)
>> hold
Current plot held
>> stem(z)
>> stem(z)
>> stem(y)
```


Figure 1: Plot of stem(y)

Figure 2: plot of stem(z)

Figure 3: plot of the convolution of stem(y) \& stem(z)
I realize that the convolution plot is off by a fraction of a decimal but this was as close as I was able to get it.

