$$
5.45(\mathrm{c})
$$

Problem 5.45(c) states:
Consider the discrete time system given by the input/output difference equation

$$
y[n+1]+0.9 y[n]=1.9 x[n+1]
$$

Compute the output response $y[n]$ to an input of

$$
x[n]=1+\sin \left(\frac{\pi n}{4}\right)+\sin \left(\frac{\pi n}{2}\right)
$$

To work this problem, we need some information from parts a and b of 5.45 . First off, in part a , it is proven that

$$
h[n]=1.9(-0.9)^{n} u[n]
$$

In part b , we computed the frequency response

$$
H(\omega)=\frac{1.9 e^{j \omega}}{e^{j \omega}+0.9}
$$

So, when we get to part c , we can see that $\mathrm{x}[\mathrm{n}]$ is a linear equation that can be broken down to smaller, more easily manageable pieces.

$$
\begin{aligned}
& x_{1}[n]=1 \\
& x_{2}[n]=\sin \left(\frac{\pi n}{4}\right) \\
& x_{3}[n]=\sin \left(\frac{\pi n}{2}\right)
\end{aligned}
$$

We then use our Common DTFT pairs to calculate $\mathrm{X}(\omega)$ for the three $\mathrm{x}[\mathrm{n}]$ equations.

$$
\begin{aligned}
& X_{1}(\omega)=\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega-2 \pi k) \\
& X_{2}(\omega)=\sum_{k=-\infty}^{\infty} j \pi\left[\delta\left(\omega+\frac{\pi}{4}-2 \pi k\right)-\delta\left(\omega-\frac{\pi}{4}-2 \pi k\right)\right] \\
& X_{3}(\omega)=\sum_{k=-\infty}^{\infty} j \pi\left[\delta\left(\omega+\frac{\pi}{2}-2 \pi k\right)-\delta\left(\omega-\frac{\pi}{2}-2 \pi k\right)\right]
\end{aligned}
$$

Then we find our $\mathrm{Y}(\omega)$ by using our different $\mathrm{X}(\omega)$ s multiplied with $\mathrm{H}(\omega)$. After we have found this, we simplify the equations using several properties found on page 250 in our textbook. The equations used in my solutions below are:

$$
\begin{aligned}
& H(\omega) \delta(\omega+c)=H(-\omega) \delta(\omega+c) \\
& |H(\omega)|=|H(-\omega)|
\end{aligned}
$$

and

$$
\begin{aligned}
& H\left(-\omega_{0}\right)=\left|H\left(\omega_{0}\right)\right| e^{-j \angle H\left(\omega_{0}\right)} \\
& H\left(\omega_{0}\right)=\left|H\left(\omega_{0}\right)\right| e^{j \angle H\left(\omega_{0}\right)}
\end{aligned}
$$

The first equation is used to find what value to plug into $\mathrm{H}(\omega)$ in all three sections of $Y(\omega)$. The second one is used in the second and third sections of $Y(\omega)$ to help simplify the expressions so that we can use our inverse DTFT pairs. Below is the solution to the problem, followed by Matlab code and graphs that support the solution.
$Y_{1}(\omega)=H(\omega) X_{1}(\omega)$
$=\sum_{k=-\infty}^{\infty} 2 \pi H(\omega) \delta(\omega-2 \pi k)$
$=\sum_{k=-\infty}^{\infty} 2 \pi H(0) \delta(\omega-2 \pi k)$
$=\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega-2 \pi k)$
Therefore,
$y_{1}[n]=1$
$Y_{2}(\omega)=H(\omega) X_{2}(\omega)$
$=\sum_{k=-\infty}^{\infty} j \pi\left[H(\omega) \delta\left(\omega+\frac{\pi}{4}-2 \pi k\right)-H(\omega) \delta\left(\omega-\frac{\pi}{4}-2 \pi k\right)\right]$
$=\sum_{k=-\infty}^{\infty} j \pi\left[H\left(\frac{-\pi}{4}\right) \delta\left(\omega+\frac{\pi}{4}-2 \pi k\right)-H\left(\frac{\pi}{4}\right) \delta\left(\omega-\frac{\pi}{4}-2 \pi k\right)\right]$
$=\sum_{k=-\infty}^{\infty} j \pi\left[\left|H\left(\frac{-\pi}{4}\right)\right| e^{-j \angle H\left(\frac{\pi}{4}\right)} \delta\left(\omega+\frac{\pi}{4}-2 \pi k\right)-\left|H\left(\frac{\pi}{4}\right)\right| e^{j \angle H\left(\frac{\pi}{4}\right)} \delta\left(\omega-\frac{\pi}{4}-2 \pi k\right)\right]$
$=\left|H\left(\frac{\pi}{4}\right)\right| \sum_{k=-\infty}^{\infty} j \pi\left[e^{-j \angle H\left(\frac{\pi}{4}\right)} \delta\left(\omega+\frac{\pi}{4}-2 \pi k\right)-e^{j \angle H\left(\frac{\pi}{4}\right)} \delta\left(\omega-\frac{\pi}{4}-2 \pi k\right)\right]$
Therefore,
$y_{2}[n]=\left|H\left(\frac{\pi}{4}\right)\right| \sin \left(\frac{\pi n}{4}+\angle H\left(\frac{\pi}{4}\right)\right)$
$=1.082 \sin \left(\frac{\pi n}{4}+0.371\right)$
$Y_{3}(\omega)=H(\omega) X_{3}(\omega)$
$=\sum_{k=-\infty}^{\infty} j \pi\left[H(\omega) \delta\left(\omega+\frac{\pi}{2}-2 \pi k\right)-H(\omega) \delta\left(\omega-\frac{\pi}{2}-2 \pi k\right)\right]$
$=\sum_{k=-\infty}^{\infty} j \pi\left[H\left(\frac{-\pi}{2}\right) \delta\left(\omega+\frac{\pi}{2}-2 \pi k\right)-H\left(\frac{\pi}{2}\right) \delta\left(\omega-\frac{\pi}{2}-2 \pi k\right)\right]$
$=\sum_{k=-\infty}^{\infty} j \pi\left[\left|H\left(\frac{-\pi}{2}\right)\right| e^{-j \angle H\left(\frac{\pi}{2}\right)} \delta\left(\omega+\frac{\pi}{2}-2 \pi k\right)-\left|H\left(\frac{\pi}{2}\right)\right| e^{j \angle H\left(\frac{\pi}{2}\right)} \delta\left(\omega-\frac{\pi}{2}-2 \pi k\right)\right]$
$=\left|H\left(\frac{\pi}{2}\right)\right| \sum_{k=-\infty}^{\infty} j \pi\left[e^{-j \angle H\left(\frac{\pi}{2}\right)} \delta\left(\omega+\frac{\pi}{2}-2 \pi k\right)-e^{j \angle H\left(\frac{\pi}{2}\right)} \delta\left(\omega-\frac{\pi}{2}-2 \pi k\right)\right]$
Therefore,
$y_{3}[n]=\left|H\left(\frac{\pi}{2}\right)\right| \sin \left(\frac{\pi n}{2}+\angle H\left(\frac{\pi}{2}\right)\right)$
$=1.414 \sin \left(\frac{\pi n}{2}+0.733\right)$

When you put all three $\mathrm{y}[\mathrm{n}]$ equations together, you get the output response $y[n]=1+1.082 \sin \left(\frac{\pi n}{4}+0.371\right)+1.414 \sin \left(\frac{\pi n}{2}+0.733\right)$

```
Ashley Stough
Extra Credit for Test 2
03/27/09
abs90
                                    5.45(c)
Matlab Code:
>> n=0:0.5:150;
> x=1+\operatorname{sin}((pi*n)/4)+\operatorname{sin}((\mp@subsup{\textrm{pi}}{}{*}\textrm{n})/2);
> for k=1:15;
h(k)=1.9*(-0.9)^(k-1);
end;
>> z=conv(x,h);
>> stem(z)
>> y=1+(1.08214* sin}(((\mp@subsup{\textrm{pi}}{}{*}\textrm{n})/4)+0.370902))+(1.41421*\operatorname{sin}(((\mp@subsup{\textrm{pi}}{}{*}\textrm{n})/2)+0.732815))
>> stem(y)
>> hold
Current plot held
>> stem(z)
```

Ashley Stough abs90

Matlab Pictures:

4 Figure 1

Ele Edit View Insert Iools Desktop Window Help

(1) Note new toolbar buttons: data brushing $\&$ linked plots on 各

Figure 1: Stem (z)- Matlab's solution

Figure 2: Stem (y)- My solution

Figure 3: Both Graphs Overlapping With Only Minor Differences

