Name:

Problem	Points	Score
4.4(b)	10	
4.4(d)	10	
4.4(e)	10	
4.4(g)	10	
5.16(a)	10	
5.16(c)	10	
5.16(d)	10	
6.14(a)	10	
6.14(b)	10	
6.14(d)	10	
Total	100	

Notes:

- (1) The exam is closed books and notes except for one double-sided sheet of notes.
- (2) Please indicate clearly your answer to the problem.
- (3) The details of your solutions are more important than the answers. Please explain your solutions clearly and include as many details as possible.

ECE 3163

4.4. Compute the DTFT of the following discrete-time signals and sketch the magnitude spectrum:

(b) $.5^{n}u[n] \leftrightarrow \frac{e^{jn}}{e^{jn} - 0.5}$ 50, $.5^{n}u[n]\cos 4n \leftrightarrow \frac{1}{2}\left[\frac{e^{j(n+4)}}{e^{j(n+4)} - .5} + \frac{e^{j(n-4)}}{e^{j(n-4)} - .5}\right]$ 1.5 U^{n} Person Appendix Production, Body Priver, NOLS which restriction to any problem there is a person appendix production, shonge in a net of the person appendix production, shonge in a net of the personal perso

(d)
$$x[n] = (n(0.5)^n \cos 4n)u[n]$$

(b) $x[n] = ((0.5)^n \cos 4n)u[n]$

(d)
$$\chi(x) = \frac{1}{4} \left[\frac{e^{\frac{1}{2}(x+4)}}{(e^{\frac{1}{2}(x+4)}-5)^2} + \frac{e^{\frac{1}{2}(x-4)}}{(e^{\frac{1}{2}(x-4)}-5)^2} \right]^{\frac{1}{2}} \xrightarrow{\mathbb{R}_{0.5}} \frac{1}{17}$$

1

(e)
$$x[n] = (5(0.8)^n \cos 2n)u[n]$$

(e) Multiply signal in Part (a) by
$$5\cos(a\pi)$$
: Ξ_{5}

$$\chi(\Omega) = \frac{5}{2} \left[\frac{e^{1(\Omega+2)}}{e^{1(\Omega+2)} - \cdot 8} + \frac{e^{1(\Omega-2)}}{e^{1(\Omega-2)} - \cdot 8} \right]$$

(g) $x[n] = ((0.5)^{|n|} \cos 4n), -\infty < n < \infty$

$$(9) X(n) = \frac{0.375}{1.25 - \cos(n+4)} + \frac{0.375}{1.25 - \cos(n-4)}$$

 $1 + \cos 2\pi$

 $H(\omega)$

5.16. A lowpass filter has the frequency response function shown to the right.

(a) Compute the impulse response, h(t):

5.16 (a)
$$H(\omega) = [1 + \cos(2\pi\omega)] p_1(\omega)$$

 $2\pi \sin(2\pi) = p_1(\omega)$
 $3\pi \sin(2\pi) = p_1(\omega)$
 $3\pi \sin(2\pi) = \sin(2\pi) + \sin(2\pi) = \sin(2\pi) p_1(\omega)$
Thus
 $h(t) = 2\pi \sin(2\pi) + 3\pi \sin(2\pi) + \sin(2\pi) + \sin(2\pi)$

(c) Compute the response, y(t), when $x(t) = \operatorname{sinc}(t/4\pi), -\infty < t < \infty$.

(c)
$$X(\omega) = 4\pi P_{\pm}(\omega)$$

 $Y(\omega) = 4\pi [1 + \cos(2\pi\omega)] P_{\pm}(\omega)$
 $Y(t) = \sin(\frac{t}{4\pi}) + [\sin(\frac{t}{4\pi}) + \sin(\frac{t}{4\pi})]$

(d) Compute the response, y(t), when $x(t) = \operatorname{sinc}^2(t/2\pi), -\infty < t < \infty$.

(d)
$$X(\omega) = 2\pi [1 - |\omega|] P_2(\omega)$$

 $Y(\omega) = 2\pi [1 + \cos(2\pi\omega)] [1 - |\omega|] P_1(\omega)$
 $Y(t) = \frac{1}{2} \sin c (\frac{\pi}{2\pi}) + \frac{1}{2} [\sin c (\frac{1}{2\pi}) + \sin c (\frac{1}{2\pi})]$
 $+ \frac{1}{2} \sin c^2 (\frac{\pi}{2\pi}) + \frac{1}{8} [\sin c^2 (\frac{1}{2\pi}) + \sin c^2 (\frac{1}{2\pi})]$

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

6.14. Use Laplace transforms to compute the solution to the following differential equations:

(a)
$$\frac{dy}{dt} + 2y = u(t), \quad y(0) = 0$$

(a) $(5+2)y(s) = \frac{1}{5} \implies y(s) = \frac{1}{5(s+2)} = \frac{\frac{1}{5}}{\frac{1}{5}} - \frac{\frac{1}{5}}{\frac{1}{5+2}}$
 $y(t) = \frac{1}{2} - \frac{1}{2}e^{-2t}, \quad t \ge 0$

(b)
$$\frac{dy}{dt} - 2y = u(t), \quad y(0) = 1$$

(b) $(S-\lambda)\gamma(S) = \frac{1}{5} + \frac{1}{5}, \quad (S-\lambda)S + \frac{1}{5-\lambda} = \gamma'(S)$
 $= \frac{1}{5-\lambda}, \quad (S-\lambda)S + \frac{1}{5-\lambda} = \frac{1}{5-\lambda}$
 $Y(s) = \frac{-1/2}{s} + \frac{3/2}{s-2} \Rightarrow y(t) = -1/2u(t) + 3/2e^{2t}u(t)$

(d)
$$\frac{dy}{dt} + 10y = 8e^{-10t}u(t), \quad y(0) = 0$$

- - - -

(d)
$$(s+10) \gamma(s) = \frac{8}{S+10} \Rightarrow \gamma(s) = \frac{8}{(S+10)^2}$$

ylt)= $8 \pm e^{-10t}$ ult)

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING