Name: _____

Problem	Points	Score
7.40(b)	15	
7.40(c)	15	
7.40(d)	15	
8.9(a)(i)	15	
8.9(a)(ii)	10	
8.9(a)(iii)	10	
9.1(a)	10	
9.1(c)	10	
Total	100	

Notes:

- (1) The exam is closed books and notes except for one double-sided sheet of notes.
- (2) Please indicate clearly your answer to the problem.
- (3) The details of your solutions are more important than the answers. Please explain your solutions clearly and include as many details as possible.

7.40. For the following linear time-invariant discrete-time systems with unit-pulse response h[n], determine if the system is BIBO stable.

(b)
$$h[n] = (1/n)u(n-1)$$

$$\sum_{n=0}^{\infty} |h[n]| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$
So the system is not BIBO stable
(c) $h[n] = (1/n^2)u[n-1]$

(d)
$$h[n] = e^{-n} \sin(\pi n / 6)u[n]$$

$$|\hat{z}|h[n]| = \hat{z}[e^{-n}\sin(m)] \leq \hat{z}e^{-n} = \frac{1}{1-e^{-1}} < \infty$$

thus the system is BIBO stable

8.9(a). Determine if the system is critically damped, underdamped, or overdamped.

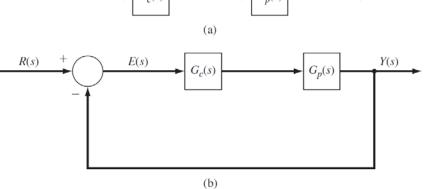
(i)
$$H(s) = \frac{32}{s^2 + 4s + 16}$$

(ii) $H(s) = \frac{32}{s^2 + 8s + 16}$
(iii) $H(s) = \frac{32}{s^2 + 10s + 16}$
8.9 (a) *i.* poles at $-2 \pm j3.46 \Rightarrow$ underdamped
ii. poles at $-4, -4 \Rightarrow$ critically
damped
iii. poles at $-8, -2 \Rightarrow$ overdamped

9.1. Consider the transfer function:

$$G_{p}(s) = \frac{1}{s+0.1} \qquad \qquad \overbrace{G_{c}(s)} \qquad \overbrace{G_{p}(s)} \ G_{p}(s) \ \overbrace{G_{p}(s)} \ G_{p}(s) \ I_{g}(s) \ I_{g}(s$$

(a) An open-loop control is shown in Figure P9.1(a). Design the control system, $G_c(s)$, so that the combined plant and controller, $G_c(s)G_p(s)$, has a pole at p = -2.



(a)
$$G_{c}(s) = \frac{k(s+o.1)}{(s+a)}$$
 $R(s) = \frac{r_{o}}{s}$
 $Y(s) = \frac{k}{(s+a)}R(s)$ $e_{ss} = r_{o} - \frac{limit}{s \neq o}sY(s)$
 $e_{ss} = 0 = r_{o} - \frac{kr_{o}}{a} \implies k = 2$
 $G_{c}(s) = \frac{a(s+o.1)}{(s+a)}$

(c) A feedback controller $G_c(s) = 2(s+0.1)/s$ is used in place of open-loop control as shown in Figure P9.1b. Verify that the closed-loop pole of the nominal system is at p = -2.

(C) Closed loop transfer function
$$G_{cl}(s) = \frac{G_{c}G_{p}}{1+G_{c}G_{p}}$$

 $G_{cl}(s) = \frac{2}{s} = \frac{2}{(s+2)}$
 $\lim_{s \to 0} \frac{1}{s} Y(s) = \lim_{s \to 0} \frac{2r_{o}}{(s+2)} = r_{o} \Rightarrow e_{ss} = 0$

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING