Name:

Problem	Points	Score
1.4(b)	10	
1.17(b)	10	
1.29(f)	10	
2.7(b)	15	
2.7(c)	20	
3.17(a)	15	
3.17(c)	20	
Total	100	

Notes:

- (1) The exam is closed books and notes except for one double-sided sheet of notes.
- (2) Please indicate clearly your answer to the problem.
- (3) The details of your solutions are more important than the answers. Please explain your solutions clearly and include as many details as possible.

1.4(b). Sketch the continuous-time signal: x(t) = (t+1)u(t-1) - tu(t) - u(t-2). Be sure to explain or demonstrate how you arrived at your solution.

1.17(b). Determine whether this CT system is causal/noncausal and memory/memoryless:

$$y(t) = |x(t)| = \begin{cases} x(t) & \text{when } x(t) \ge 0\\ -x(t) & \text{when } x(t) < 0 \end{cases}$$

It is causal because it depends only on current values of time (it is an instantaneous system).

It is memoryless for the same reason.

1.29(f). Determine whether the following discrete-time system is causal/noncausal, memory/memoryless:

$$y[n] = \sin[x[n]] .$$

The system is causal because it does not depend on past values of the input (e.g, x[n-1]) or output (e.g., y[n-1]).

The system is memoryless because y[n] is only a function of x[n].

EXAM NO. 1

2.7(b). For the signals shown, compute and plot the convolution: y[n] = x[n] * v[n].

2.7(c). For the signals shown, compute and plot the convolution: y[n] = x[n] * v[n].

3.17. Compute the Fourier transform of the following signals:

(a)
$$x(t) = 2e^{-4t} \cos(10t)u(t)$$

Use two properties:

$$e^{-4t}u(t) \Leftrightarrow \frac{1}{j\omega+4} \qquad x(t)\cos 10t \Leftrightarrow \frac{1}{2} \left[X\left(\omega+\omega_0\right) + X\left(\omega-\omega_0\right) \right]$$
$$\mathcal{F}\left\{ 2e^{-4t}\cos(10t)u(t) \right\} = (2)\frac{1}{2} \left[\frac{1}{4+j(\omega+10)} + \frac{1}{4+j(\omega-10)} \right]$$
$$= \left[\frac{4+j(\omega-10)+4+j(\omega+10)}{(4+j(\omega+10))(4+j(\omega-10))} \right]$$
$$= \frac{2(4+j\omega)}{116+8j\omega-\omega^2}$$

(c) $x(t) = 2te^{-2t}u(t)$

Use two properties:

$$e^{-4t}u(t) \Leftrightarrow \frac{1}{j\omega + 4} \qquad tx(t) \Leftrightarrow j\frac{d}{d\omega}X(\omega)$$
$$\mathcal{F}\left\{2te^{-2t}u(t)\right\} = 2j\frac{d}{d\omega}\left[\frac{1}{2+j\omega}\right]$$
$$= 2j\left[\frac{-1}{(2+j\omega)^2}j\right]$$
$$= \frac{2}{(2+j\omega)^2}$$