
Automatic Feedback Detection and Elimination System

by

Robert M. Brown Jr.

Submitted in Partial Fulfillment of the Requirements in EE4012

April 23, 1998

Mississippi State, Mississippi

Department of Electrical and Computer Engineering

Special thanks to Dr. Joe Picone and everyone at ISIP for their advice, assistance, and

patience in the development of this project.

TABLE OF CONTENTS

I. Introduction ..1

Background ...1
Different Solutions ...1
Proposed Solutions .. 2

II. Theory .. 2

What is Acoustical Feedback? ...2
Radix-4 Fast Fourier Transform ...3
Time Domain Windowing ..3
Peak Detection..3
Second Order Notch Filters...4

III. The Solution ...4

IV. Testing ...5
Input and Output of a Headerless Data File ...6
Radix-4 Fast Fourier Transform..6
Peak Detection..6
Second Order Notch Filter ..7
System Optimization..7

V. Results..7

VI. Future Work ...8

Appendix A
References...A1

Appendix B
Figures...B

Appendix C
Graphical User Interface TCL/TK Code.. C1
Automatic Feedback Detection and Elimination System C++ Code C2

LIST OF FIGURES

Figure 1: Feedback Path .. B1

Figure 2: John Coltrane’s Giant Steps.. B2

Figure 3: Feedback .. B2

Figure 4: Giant Steps and Feedback... B2

Figure 5: Time Domain Windowing .. B3

Figure 6: Second Order Notch Filter .. B4

Figure 7: Software Flow Chart... B5

Figure 8: 1500Hz Sine Wave... B6

Figure 9: 1500Hz Sine Wave Filtered .. B7

Figure 10: Giant Steps... B8

Figure 11: Giant Steps Filtered .. B8

Figure 12: Giant Steps with Feedback.. B9

Figure 13: Giant Steps with Feedback Filtered... B9

Abstract

The main focus of this project is to develop a software based system to detect and
remove acoustic feedback from a digital audio source. This program will process an
audio file or a digital audio data stream in real-time, detect acoustical feedback, and filter
the feedback out of the signal. The program will be executable from a command line or
through its Graphical User Interface. The acoustical feedback will be detected with the
use of peak detection in the frequency domain and removed with notch filters in the time
domain.

The technology developed will be applicable to any computer based digital audio
system to improve source quality, available gain from the system, protect equipment from
unnecessary strain, and protect hearing. This system will be able to be used in a
compatible computer based system where the user is recording or processing audio files
that contain or have the potential to contain feedback.

I. Introduction

Background

The presence of acoustic feedback in sound amplification systems can cause
problems from mild irritation to damage of equipment to the damage of a person’s
hearing. Feedback is a loud ringing or howling that occurs when the sound leaving a
speaker is picked up by a microphone or other source and is re-amplified, Figure 1. In
general, this cycle repeats until the system reaches its maximum volume or something is
done to break this loop of sound regeneration. [1] Every acoustic system has distinct
regions of resonant frequencies, or frequencies that are prone to feedback. These
frequencies are characteristic of the room the system is in, as well as each portion of the
system: the speakers, the amplifiers, microphones, and other components.

The most basic way of solving the problem of acoustic feedback is to prevent it
from occurring in the first place. A system that is set up and maintained correctly can all
but eliminate acoustic feedback. Proper speaker and microphone placement, proper
equalization, and optimal system gain can all contribute to producing a stable system.
Unfortunately, in real-life application not all of these components can be made ideal, thus
causing potentials for feedback. Changes in room characteristics, positions of
microphones, and characteristics of other equipment that happen during the duration of a
performance or the production of sound can create potential for feedback. These rapid
system changes call for a more advanced system of monitoring and removing feedback
from a system than having a person perform these tasks in real time.

Different Solutions

There are multiple ways of solving any engineering problem. Finding one
solution that best fits the particular situation is a greater challenge. There are several
different solutions to detecting and removing acoustical feedback that have already been
developed. Along with these solutions, several products have been brought to market
that claim to solve the problem of acoustical feedback. These products range from $400
to $1000.

An adapting delay comb filtering device, developed by Bernard A. Hutchins and
Walter H. Ku, acquires, nulls, and tracks an unwanted periodic interfering signal that is
corrupting a desired signal. [2] Phase-modulation principles have also been applied in
solving this problem. [3] Some solutions implement phase-locked loops to provide a
detection tool for detecting acoustic feedback in a signal. [4] Other methods of detecting
feedback are to look at the frequency domain and determine peaks or deviation between
points in the frequency domain. [5]

Several products on the market that perform these tasks are made by Sabine, Inc.,
Roland Corporation U.S., and Peavey Electronics Corporation. Roland makes the AF-70
Anti-Feedback DI. [6] Peavey Mentor Feedback Eliminator product line boasts several

products to detect and remove feedback. [7] Sabine, Inc. has several products in their
line of FBX Feedback Exterminators. [8, 9]

Proposed Solution

The proposed solution to implement is a software package written in C++ and
TCL/TK to detect and remove feedback from a digital audio source. This solution
processes a headerless data file, detects acoustical feedback, and filters the feedback out
of the signal. The detection phase is a two-part process: a Fast Fourier Transform (FFT)
and a frequency domain peak detection algorithm. The elimination phase consists of
designing a second order notch filter at the detected frequency to remove the specific
range of frequencies containing the acoustical feedback.

The final product is able to process a headerless data file, detect acoustical
feedback, and filter this feedback from the signal. Several aspects of the software are
user definable to enable the user to optimize the software to the users specific problem.
The user can set the sensitivity of the detection phase by adjusting the threshold above
which peaks are filtered. The resolution of the FFT, thus the resolution of the detection
phase, allows the user to determine the necessary trade-offs between run time the
resolution of detection. Other user definable characteristics of the software are frame
duration and window duration.

II. Theory

What is Acoustical Feedback?

Feedback is a loud ringing or howling that occurs when the sound leaving a
speaker is picked up by a microphone or other source and is re-amplified, Figure 1. This
cycle repeats until the system reaches its maximum volume or something is done to break
this loop of sound regeneration. [1] For a system to be stable, it is necessary that at any
frequency for which the overall phase shift is an integral multiple of 2 ⋅π radians the loop
gain must be less than one. Any time this criterion is violated the system will begin to
oscillate and feedback will occur at the frequencies for which the loop gain exceeds one.
[4]

Three different frequency domain plots of sound are presented to aid
understanding of what sounds in the frequency domain look like. The first plot is music,
Figure 2, the second is feedback, Figure 3, and the third is music and feedback, Figure 4.
It can be seen that there is a definite difference in the three different frequency domain
plots. The plot of music is fairly dense with not much wide variation in frequency. The
plot of feedback has definite peaks with great variation in the signal. The plot of both
feedback and music shows a combination of the previous two plots. In this plot there is

still the denser features of the music in addition to the spikes of feedback periodically
interspersed.

Radix-4 Fast Fourier Transform

The Radix-4 Fast Fourier Transform (RAD-4 FFT) algorithm was chosen for its
speed in computation. This algorithm decomposes the N-point Discrete Fourier

Transform (DFT), ()X k x en
n

N j kn

N=
=

− −

∑
0

1 2π

, into sets of two and four-point DFT’s.[10]

Efficiency is increased due to the computation in a Radix-4 butterfly involving fewer
complex multiplications than the Radix-2 butterfly.[11]

An important consideration that was taken was the fact that the resolution of the
detection phase is dependent on the sample frequency and the number of FFT points used

by the equation Resolution
Sample Frequency
Number FFT Points

= . As an example, if the sampling

frequency of the file is 44100Hz (a standard sampling rate for audio formats), and a 1024

point FFT is used the resolution will be 43.07Hz, Resolution =
44100

1024
4307

Hz
Hz= . .

Unfortunately, the more points used in computing the FFT the computation time is
increased thus increasing the program execution time. The fact that resolution is
dependent on both the sampling frequency and the number of FFT points used causes a
trade off between these characteristics and total processing time.

Time Domain Windowing

Rectangular time-domain windowing was used to provide smoothing between
each frame of data and to increase the resolution in the detection phase. If windowing
were not implemented, discontinuities would occur between frames that would cause
spikes between each frame causing unwanted distortion. Each window is centered
around a particular frame and overlapping the previous and what will be the next
window, this overlap provides the smoothing between frames. Figure 5 demonstrates this
using a five sample window and a three sample frame.

Detection Phase

The detection phase of the software consists of iterating through each point in the
FFT and determining which point is the maximum or which points are above the
designated threshold. The FFT was performed on each window of data to help in
increase the resolution of the detection phase by allowing more points to be evaluated for

each frame of data processed. The two methods implemented are an algorithm to detect
the maximum peak in each frame and to detect all the peaks above a threshold in each
frame. The threshold will be determined by XdB over the average of the FFT. Each
point in the FFT above this threshold will be recorded as a point that is determined to be
acoustical feedback. When a peak is detected it corresponds to particular frequency by

Frequency FFT Point
Sample Frequency

Number of FFT Points
= ⋅ .

Second Order Notch Filters

A second order notch filter will be implemented to remove the specific frequency
containing the feedback. The transfer function of the filter is

()H z b
z z

r z r z
=

− +
− +

− −

− −0
0

1 2

0
1 2 2

1 2
1 2

cos
cos

ϖ
ω

. [12] A typical spectrum of a second order notch filter

with the notch centered about fo and a smooth pass band can be seen in Figure 6. The
filter or set of filters change for each frame of data that is processed. With each new
frame of data a new filter or set of filters are computed and applied to each sample in the
frame. This allows multiple filters to be implemented on each sample in a frame of data
and the characteristics of the filter to change as the characteristics of the signal change.

III. The Solution

The Automatic Feedback Detection and Elimination System was developed in
software format using C++ on a UNIX based system, Solaris 6.5, using a Sparc 200MHz
processor. The software was written in a modular format for ease of programming,
debugging, and implementation. A free-ware program, developed by Dr. Joe Picone, to
process a headerless data file using time-domain windowing was used as a base to
develop the frame work for this program. [13] These files were modified and tested so
that they fit the needs of the Automatic Feedback Detection and Elimination System.

The basic algorithm is divided into two major tasks: detection and elimination,
Figure 7. The flow of the software is to input the audio file as F(t), perform a FFT, detect
acoustic feedback by detecting the peaks above a threshold in the frequency domain, and
finally filter the peak frequencies from the signal.

When a headerless data file is processed, time domain windowing is used to
divide the file into frames so that each frame of data is processed independently. This is
done to allow changes to be made in the filter design for each frame of data as the
characteristics of the audio sample change. Each frame of data is computed and
windowed to provide smoothing between the frames, as discussed earlier to prevent
spikes between each frame. After the each frame of data is processed, it is outputted to a
file so to be played at a later time.

The detection phase is divided into two major portions: the FFT and the peak
detection phase. Radix-4 Fast Fourier Transform is performed to find the frequency
domain characteristics of the data. As discussed earlier, the FFT and the sampling
frequency limit the resolution of the peak detection phase. If the sampling frequency is
44100Hz and the number of points in the FFT is 1024, the resolution is only 43.07Hz.
The peak detection phase and filtering phase is limited to 43.07Hz intervals. This causes
less discrimination between what is feedback and what is the wanted signal. If feedback
was to occur at 35Hz, it would be detected in the range of 0Hz to 43Hz and the whole
frequency range would have to be eliminated to remove the feedback at 35Hz. This
would cause all of the signal in that range to be eliminated thus severely distorting the
wanted signal.

At higher resolutions, the algorithm can more accurately detect remove and
remove the portion of signal that contains only feedback without distorting the remaining
signal. Unfortunately, to provide a higher resolution a FFT with more points must be
used. A FFT containing a larger number of points requires longer computation time thus
increasing program run-time. This is something that must be considered when deciding
what resolution the user wants the algorithm to perform.

Once the peaks in the frequency domain have been detected, the algorithm moves
to the elimination stage. The elimination stage consists of applying a second order notch
filter to each sample in the frame of data. This filter is applied in two parts: computing
the coefficients and applying the filter. The coefficients for each frame of data are
computed for each peak that was detected. These coefficients are stored and used when
applying the filter to each sample. With the coefficients computed for each peak, the
second order notch filter can be applied. The filter or filters are applied to each sample in
the frame of data. This allows a single filter or multiple filters to be applied in the most
efficient manner.

After a frame of data is processed, it is written to an output file. The algorithm is
repeated for each frame of data in the file. The last frame and window of data are zero
padded if the data does not make a complete frame. After processing is done, the output
file will contain a version of the original signal with the acoustic feedback remove along
with a small portion of silence at the very end of the file due to the zero padding of the
last frame.

IV. Testing

The testing of the software was divided into two phases: module testing and spiral
testing. During the module testing phase, each part of the software was tested to ensure
that it was functioning properly.

Input and Output of a Headerless Data File

The first section to be tested was the input and output of a headerless data file
using time domain windowing. The main process in testing this section was to process a
headerless data file using the software and compare the input file and the output file to
determine if the file was processed with no errors.

The program does zero pad the output to a length of the full size of the last frame.
This causes the files to be exactly the same until the very end of the file, where the output
file contains a portion of data that is “zero”. This can be shown to be consistent and
correct by processing an output again using it as the input. The new version of the output
file will be identical to the input (the first output) file. This is due to the fact that the file
was of a length that produced a number of frames that would completely encompass the
data with no new empty spaces that would be zero padded.

Radix-4 Fast Fourier Transform

A program to perform a Radix-4 Fast Fourier Transform was incorporated into the
design of the Automatic Feedback Detection and Elimination System. This piece of
software was free-ware optimized by The Institute for Signal and Information Processing
(ISIP). [14] The bulk of this testing was formatting the data to be inputted to the FFT
into type double from a type float and formatting the output of the FFT from real and
imaginary parts to a magnitude of the square root of the sum of the squares:

mag= +Re Im2 2 . This section was tested by processing known synthetic data, know
sine waves, and plotting the results of the FFT to ensure proper operation.

Peak Detection

The peak detection function processed the output of the FFT to determine the
maximum peak or peaks above a threshold set by the user. This was tested with the use
of known synthetic data and on real values produced by the FFT. The first set of
synthetic data consisted of a simple array of numbers to determine if the function would
correctly identify the maximum number in the array. The second set of synthetic data
consisted of audio files of known sine waves. This allowed testing on a real audio
sample at different frequencies and sampling rates. This allowed testing that first
determined that a single peak could be detected along with a number of peaks above a
threshold.

Second Order Notch Filter

The second order notch filter was implemented in two parts: computing the
coefficients and applying the filter. This allowed for separate testing and implementation
of each part. Again, both parts of the filter were tested using sets of synthetic and real
data sets. The use of separate functions for computing the coefficients and applying the
filter allow the filter to be applied to each sample in a frame while only calculating the
coefficients once for each frame of data. Unfortunately, the second order notch filter does
not provide a flat enough pass band to prevent significant distortion of the spectrum,
Figure 6.

System Optimization

The spiral testing occurred in the system optimization phase of the testing. In this
section of testing the optimal values for threshold, filter bandwidth, frame duration,
window duration were determined. Bugs in the program as a whole were identified and
removed.

V. Results

The final result of this project is a piece of software, Automatic Feedback
Detection and Elimination System, and a graphical user interface that operates on a
UNIX based system, Solaris 6.5, using a Sparc 200MHz processor that detects and
eliminates feedback from a headerless data file. The program can be operated through
the command line or via the graphical user interface. The user can process a headerless
data file while controlling the sample frequency, the number of FFT points, the window
duration, and the frame duration. The program will detect the maximum peaks and filter
them using a second order notch filter.

Several files were used in the final testing phase of the software. A 1500Hz sine
wave, a sample of music, and a sample of music with acoustical feedback present. Each
of these samples were process and the resulting samples were evaluated to determine the
effect of the Automatic Feedback Detection and Elimination System software. To
evaluate these samples the frequency domain of each was plotted as shown in Figure 8
through Figure 13. In Figure 8, a 1500Hz sine wave was plotted, and the processed
version is shown in Figure 9. It can be seen that by processing the sample the peak at
1500Hz was removed. Unfortunately, the filter also amplified the noise in the sine wave.
The second file processed was a sample of John Coltrane’s Giant Steps, 1960. Figure 10
and Figure 11 show plots of the sample before and after being processed. The first one
show the majority of the signal in lower end of the spectrum and a portion of high
frequency noise. The processed version show a portion of the peck in the lower end of
the spectrum filtered and the majority of the noise distorted throughout the spectrum.
The final two plots, Figure 12 and Figure 13, show the frequency spectrums of Giant

Steps with feedback. In Figure 12, the feedback can be seen around 2500Hz and again at
21000Hz along with the music and noise similar to Figure 10. The final plot, Figure 13,
shows a significant portion of the feedback removed in the region of 2500Hz.

These three cases help to show how the Automatic Feedback Detection and
Elimination System effects on different types of signals. It is evident that the filter
introduces significant distortion to the signal. This is caused by the gain of the filter not
being 0dB across the pass band. This problem could be solved by using a better filtering
algorithm. The filter is effective enough to successfully remove a portion of the feedback
from a signal. In the grand spectrum, the system was implemented as planned. As most
research projects continue through their life cycle problems are found. The most
significant problem encountered was the second order notch filter. Fortunately, the
current implementation showed that it was possible to detect and eliminate feedback
using the planned system.

VI. Future Work

Future work could better optimization of the system, providing multiple versions
of the software to perform on different computer platforms, real-time operation, and
firmware realization. Further optimization of the software could be implemented to
provide better detection and filtering along with faster program run-time. A more
advanced detection algorithm could be implemented. A possibility for this could be
considering not only the peaks in frequency but also consider the deviation between
peaks. Advanced filtering techniques could be applied to provide more accurate filters.
Higher order notch filters could provide better correlation between center frequencies,
attenuation, roll-off, bandwidth, stop-band ripple, pass-band ripple, and a flatter pass
band.

Continued development of this software could provide multiple versions of the
program to operate on different platforms. It would be possible to provide versions to run
on the different types of processors (Sparc vs. Intel Pentium) in the UNIX environment
along with version to operate on Windows95, WindowsNT, and Macintosh
environments.

Further development could be done to provide real-time operation in these
different environments. Proper inputs and outputs must be developed, which would
allow the software to operate using the computer’s microphones and speakers instead of
processing a file. It would also be necessary to optimize the algorithms to provide faster
operation time, which would minimize the system delay.

The final problem to be conquered would be to implement this system in
firmware as a product that would be usable independent of a computer. A system such as
this could be used in any type of sound system as an independent unit or possibly
integrated into an equalizer or a mixing board.

Appendix A

References

[1] Doran Oster, “The Story of Feedback.” Sabine Adaptive Audio, 1997.
http://www.sabineinc.com/frames/home.html 1998.

[2] Bernard A. Hutchins, Jr., Walter H. Ju, “An Adapting Delay comb Filter for the
Restoration of Audio Signals Badly corrupted with a Periodic Signal of Slowly Changing
Frequency.” Journal of the Audio Engineering Society, vol. 30, No. 1/2, 1982
January/February.

[3] L. N. Mishin, “A Method for Increasing the Stability of Sound Amplification
Systems.” Scientific-Research Institute of medical Instrumentation and Equipment,
Moscow, 1957.

[4] Eugene T. Patronis, Jr., “Electronic Detection of Acoustic Feedback and Automatic
Sound System Gain Control.” Journal of the Audio Engineering Society, vol. 25, 1992.

[5] Michael P. Lewis, Timothy J. Tucker, Doran M. Oster, Patent 5245665 : Method and
Apparatus for Adaptive Audio Resonant Frequency Filtering. Sabine Musical
Manufacturing Company, Inc. September. 14, 1993.

[6] Roland Corporation U.S., http://www.rolandus.com/index.html 1998.

[7] Peavey Electronics Corporation, http://www.peavey.com/ 1998.

[8] Sabine, Inc., http://www.sabineinc.com/frames/home.html 1998.

[9] M. P. Lewis, T. J. Tucker, D. M. Oster, Method and apparatus for adaptive audio
resonant frequency filtering. Patent Number: 5245665, Sabine Musical Manufacturing
Company, Inc. June 12, 1991, http://www.patents.ibm.com/details?patent_number=5245665 1998.

 [10] J. Picone, A. Ganapathiraju, M. Balducci, and J. Hamaker, Benchmarking of FFT
Algorithms, Department of Electrical and Computer Engineering, Mississippi State
University, Mississippi.

[11] C.S. Burrus and T.W. Parks, DFT/FFT and convolution Algorithms: Theory and
Implementation, John Wiley and Sons, New York, NY, USA, 1985.

[12] John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications. Third Edition, Prentice-Hall, Inc. 1996.

[13] J. Picone, Computer Assignment 1. Department of Electrical and Computer
Engineering, Mississippi State University, Mississippi.
http://WWW.ISIP.MsState.Edu/resources/courses/ece_4773/tools/1994/solution_01/ 1998.

[14] A. Ganapathiraju, Benchmarking of FFT Algorithms. Department of Electrical and
Computer Engineering, Mississippi State University, Mississippi.
http://WWW.ISIP.MsState.Edu/resources/technology/software/1997/parallel_dsp/ 1998.

Appendix B

Figure 1: Feedback Path.

Figure 2: John Coltrane’s Giant Steps Figure 3: Feedback

Figure 4: Giant Steps & Feedback

Figure 5: Time Domain Windowing

Figure 6: Second Order Notch Filter

F(t)

FFT

Filter

Identify
Offending
Frequency

F`(t)

Detection

Elimination

Figure 7: Software Flow Chart.

Figure 8: 1500Hz Sine Wave

Figure 9: 1500Hz Sine Wave Filtered

Figure 10: Giant Steps

Figure 11: Giant Steps Filtered

Figure 12: Giant Steps with feedback

Figure 13: Giant Steps with Feedback Filtered

Appendix C

TCL/TK Code

Automatic Feedback Detection and Elimination System

C++ Code

