
                                                                                                                                                                       

                                                                                        1                                                                                                

“SUE ATE AN APPLE AND FRED A PEAR” –   
A TUTORIAL ON PARSERS AND EVOLUTIONARY ALGORITHMS 

 
Sanjay. Patil 

Center of Advanced Vehicular System 
Mississippi State University 

patil@cavs.msstate.edu 
 

ABSTRACT 

Parsing the sentence as mentioned in the title of the paper 
requires the parser to overcome ambiguity. Natural language 
processing (NLP) is a task to understand the conversational 
speech by using the knowledge of language. Automatic 
speech recognition (ASR) systems are deployed for 
understanding conversational speech. The major step in 
improving the performance of ASR is to parse the words 
correctly. Probabilistic structure for the parsers has shown 
improvement in the performance, but still more needs to be 
done. This paper tries to mesh natural evolution concepts 
with the probabilistic parsers (PP) with an intention of 
seeking improvement in the performance. This paper 
explains the concept of genetic algorithms (GA) and how it 
can be used along with PP through some stripped down 
illustrations. Finally, the paper concludes by anticipating 
future research directions.  

1. INTRODUCTION 

Starting with a complete sentence as a root and then by 
chopping it into smaller segments or constituents, the 
semantic and syntactic purpose of the sentence can be 
understood. By speaking to a machine and by making it 
understand your intention has been the foremost goal of 
scientists working in the field of speech recognition. In the 
application of machine translation, NLP task is to determine 
the lexical tag for each word, parsing sentences and 
determining the expression of the sentence.  

Probabilistic parsers have been used to improve the 
performance. Few are of the view that, PCFG parsers are 
based on the psycholinguistic research [13]. But ambiguity 
with differentiating the words for a particular intention is a 
difficult task. The ambiguity arises because of the large 
search space, lack of training dataset, and many other 
factors. Heuristic methods have been used. One such 
heuristic technique is evolutionary algorithms and genetic 
algorithms are one such evolutionary approach. Research 
[13] also hints that human parsing tries to turn on and off a 
particular rule, and often do not apply rules sequentially, 
indicating a possibility of adopting evolutionary approach in 
tandem with PCFG parsers. 

The task dealt within this paper is to understand how 
GAs can be used along with the present PP to improve the 
parsing performance. 

The paper is developed in following way. The next 
section explains the basics related to parsers and the 
ambiguity associated. Following which, GAs is explained in 
subsequent sections. In section 4, the application of Gas to 
PPs is detailed out. Finally, the paper concludes with the 
research directions that can drive the improvement in the 
performance of PPs by coupling GA.  

2. PARSERS 

Parsing is defined as a process of taking an input and 
producing some sort of structure for it [2]. Parsing is a very 
important step in recognition and generation of natural 
language. Syntactic parsing is typically defined as the task 
of recognizing a sentence and assigning a syntactic structure 
to it.  Such a parser can be deployed as: 
1. Grammar checking block in word-processing systems, 
2. Semantic analysis block in machine translation, 

question answering, and information extraction, 
3. Most important, to assist language models in speech 

recognition. 
Most of the parsers are based on context free grammars 

(CFG). CFGs are often referred to as phrase structure 
grammars. A CFG has four parameters: 4-tuple – (N, ∑, P, 
S), with, N being the set of non-terminal symbols, ∑  the set 
of terminal symbols, P being set of productions, a set of 
rules relating a non-terminal to another non-terminal or a 
terminal symbol, and lastly, S is the designated start symbol. 
Consider the following example shown in Figure 1. 

 

 
Figure 1: An example of context-free grammar (CFG) 



                                                                                                                                                                       

                                                                                        2                                                                                                

In this example, I have adopted the standard abbreviations: 
NP for noun phrase, Det for determiner, Nom for nominal. 
Subsequently, based on the CFG in the example, a parse 
tree can be developed as in Figure 2. 
 

 
Figure 2: Parse tree fro the CFG described above 
 

For the CFG described above, we have a single parse 
tree and a single combination. But, as the number of 
terminal and non-terminal symbols increases, the number of 
rules will as well increase and thus many more parse trees 
be generated. Naturally, the complexity to tackle with 
ungrammatical sentences has to as well increase.  

Consider an example shown in the Figure 3 below. The 
CFG rules are not described here, but the example is stated 
to describe the complexity involved. The parse tree was 
developed with the help of Machinese natural language 
parser [15].  

 

 
Figure 3: Parse tree which resolves ambiguity 
 

The above example is to illustrate that ambiguity can 
arise in parsing the word book. But, the grammar defined 
within does take into account book as a verb as well as a 
noun. So, the parsing algorithm parses the two occurrences 
of book correctly.  

But, it important to mention here that, CFGs on its own 
will not define the parsing algorithm [13]. CFGs define 
language, but not the parsing algorithm. 

As illustrated in Figure 4, CFG will define the structure 
for language, but the parsing algorithm will decide how to 
utilize the language to find structure in the input sentence. 

 
 

 
Figure 4: Relation between CFG and parsing algorithm 

 
CFG parsers are mostly dynamic programming based 

algorithms, Earley algorithm (top-down parsers), Cocke-
Younger-Kasami (CYK) and Graham-Harrison-Ruzzo 
(GHR) algorithm to name a few of them. 

Parsers based on probabilistic structures will utilize it in 
one of the following three ways: 
1. as language model, to determine what someone probably 
said, 
2. as a search pruning approach, 
3. as one-in-many decision maker [1]. 

For our case study, I am considering the third option, 
that of using PCFG parsers to resolve ambiguity. 
What would define the parser performance? Parser 
performance is application specific, training and test 
corpora specific, disambiguation ability specific. 

Not all sentences fed to a parser can generate a 
grammatically correct parse tree, and / or, it is likely that 
parser might generate more than one grammatically correct 
parse trees (based on the rules, productions, and the way in 
which the algorithm is implemented). 

A parser has a responsibility to resolve as many as 
ambiguities as possible. A parser gets a sentence as an 
input, it has a set of symbols (term used loosely to include 
terminals and non-terminals), and a set of productions 
(which related terminals to terminals as well as terminals to 
non-terminals) and defines a criteria (called as derivation, 
and language). Based on all of the above information, parser 
will, 
1. firstly break down the input sentence into smaller 
subsections within the production constraints, 
2. secondly, this break-down process will continue till a 
terminal is reached (top-down approach) or a root symbol is 
reached (bottom-up), 
3. after which generate a parse tree, linking the root symbol 
to the terminals. 



                                                                                                                                                                       

                                                                                        3                                                                                                

All above steps seem to obvious, if both the input 
sentence and the set of productions are well within the 
bounds of grammar and language. But, still we can foresee a 
problem (or a couple of them): 

Firstly, ambiguity may arise if parser finds more than 
one parse tree. Secondly, it many find none. Thirdly, the 
parse tree found may not be appropriate one. All these 
problems hint towards a modification in the parsing 
algorithms. Let us consider Figure 5 to exemplify the 
ambiguity issue a little more. 

 

 
Figure 5: Ambiguity: one of the parse trees is inappropriate 

 
Second of the parse trees shown in Figure 5 is more 

appropriate [12],[15]. Even if it seems obvious, S. Crain and 
J Fodor analyzed and stated that, grammar must assist parser 
in removing the sources of ambiguities [13]. Associating 
probabilities to different parse trees and then deciding on 
the most likely one to be the most probable tree can be one 
of the remedies, for which probabilistic CFG (PCFG) parser 
seems to be a viable option. The difficult to parse sentences 
need a dedicated rule or heuristics to resolve the 
ambiguities. Hence, some other combination with PCFG 
parsers could increase the chances of improving the 
performance. 

Before I move on to explain how associating GA with 
PCFG parsers can help improve the performance, let us 
understand what genetic algorithm is and various 
terminologies associated with GA. 

3. GENETIC ALGORITHM 

Genetic Algorithms are modeled on natural evolution 
phenomena. The features existing in nature which are 
adopted in genetic algorithms and form the base are: 

1. Basic building blocks of living beings are 
chromosomes. These chromosomes are operated on 
during the evolution process. Hence, an individual 
used in the computation is sometimes called as 
chromosome.  

2. which chromosome to be selected to father the next 
generation is based on its ability to represent its 
best chance in representing survival. 

3. there is a possibility that next generation may 
contain altogether different characteristics not seen 
in the parent. 

4. the evolution process does not hold history i.e. the 
information of how the next evolution is evoked in 
not dependent directly on its preceding steps, but 
some sort of mechanism can be incorporated to that 
effect.  

Each feature mentioned above acts as a plus for using 
genetic algorithms in parsing application, because genetic 
algorithms (GA) is just an approach, a skeleton which can 
be morphed to suit PCFG ideology. 

GA finds its application in many areas of aircraft 
design, routing design for telecommunication networks, 
synthesis of neural network architecture [3][7][11][13]. 

GA can be broadly described as shown in Figure 6. 
The algorithm starts with initializing the population. 

Thus, the number of individuals at the start must be known 
or else can be assumed based on some heuristics. Naturally, 
we will be seen ahead in the explanation, GA allows rather 
large degrees of freedom which can be controlled by the 
application. Because of this attribute, GA can easily mesh 
with the application and can become application specific. 
Linking GA to the application converts the algorithm from 
being application-alien to implementation specific. The next 
step is to evaluate the individuals within the population. 
This evaluation function is again developed based on the 
application or problem statement, after which the next 
generation is created based on “survival of the fittest” and 
diversity criterion. The mix of both these factors is again 
application specific. Each of the two factors mentioned 
above – survival of the fittest and diversity criterion – 
signifies the convergence rate and options to have different 
(multiple) solutions.  

In the next step, couple of members are deleted or 
declared dead. The idea is to give sufficient enough survival 
chance to the next generation. Now GA steps ahead to 
evaluate the newer generation based on the fitness function. 
After which the algorithm decides to continue or stop the 
whole process. Thus, all the above steps baring the 
initialization one are iterated the number of times specified 
or target is achieved. 



                                                                                                                                                                       

                                                                                        4                                                                                                

 

 
Figure 6: Procedure for simple genetic algorithm 

 
Before we combine GA with PCFG parsers, let us 

understand a couple of more concepts related to GA. 
GA works with two operators – mutation operator and 
crossover operator [9]. 

As shown in Figure 7, the mutation operator performs 
changes in the pattern of a chromosome (an individual) at 
random. The location at which the change will take place 
and the change that will take place will be decided by the 
problem statement. In the illustration shown in Figure 7 and 
Figure 8, the values with bold face positions are the one that 
will be changed. The values a location takes is either 1 or 0, 
for the example illustrated (thus we have an example set up 
for binary chromosome). Figure 7 shows two examples, first 
one represents changes at two locations while the second 
example shows change taking place at only one location. 
For mutation to take place, only one parent individual is 
required. 

 

 
Figure 7: Examples on mutation operation 

 
Crossover operator produces two individuals for the 

next generation by combining two parents. As shown in 
Figure 8, the parent individuals are segmented at n 
randomly selected points after which the segments are 
switched. For example a, two segments will be changed, 
and in example b, one segment undergoes change. So, the 
value associated with parent A will be interchanged with the 

values associated with the mating parent B at the segments 
to be switched. 

 
Figure 8: Examples on crossover operation 

4. EVOLUTIONARY PARSING 

To recap, parsing is the process of associating structure to a 
sentence according to a particular grammar. To overcome 
the ambiguities with parsing, probabilistic CFG parsers is 
one of the viable solutions.  
Probabilistic parsing model is defined as a model which 
evaluates the probability of different parse trees T for a 
sentence S according to some grammar G by finding: 

∑ =
T

GSTPwhereGSTP 1),|(),|(  (1) 

Based on the above model, the parser finds the most 
probable parse of a sentence Ť: 

),|(maxargˆ GSTPT
T

=  (2) 

Finding the probabilities has various options which are 
dealt elsewhere [1][2][10]. The major concern of this paper 
is, given these probabilities, how to incorporate GA to help 
improve the chances of getting a correct parse. 

A couple of variations are explained in [5] [6] but the 
scheme used by this paper is also discussed in [7] [9]. 

Genetic algorithm as described in Figure 6 can be used 
with the PCFG parsers by initializing the potential parsers 
for the sentence based on grammar and language. The two 
genetic operators – mutation and crossover – are applied on 
the initial guesses, which will modify these potential 
parsers. But, it is possible that the next generation will 
either move away or close to the best-ever parser tree.  

The fitness function is used to find the distance between 
the feasible and probable parse of the input sentence. This is 
done by defining the feasibility criterion. Feasibility 
criterion is defined as the number of grammatical correctly 
grammar rules applied to an individual parser. The 
probability of a parse will be the product of the probabilities 
of such grammar rules. 

As discussed earlier, GA does not specify the fitness 
function neither does it provides the deadline on the number 
of iterations to be used. Hence, PCFG parsers and the 
grammar rules will define the constraints for evolution 
towards and generation of the best-ever parse tree. 



                                                                                                                                                                       

                                                                                        5                                                                                                

Let us consider the GA for the example sentence – the 
man sings a song. The example is adopted from [7]. For the 
input sentence by referring to the PCFG rule-book, each 
individual word is categorized. Based on the start symbol 
rules, the individuals are defined.  The details of two (from 
the many possible) individuals are listed below. The 
breakup from the terminals to the start symbol is listed for 
each individual.  The example given below is a stripped 
down example to briefly illustrate the utility of GA for 
PCFG parsing. It is easily possibly that we would have more 
than two possible individuals (contenders) for the best 
possible parse. 

Next, the words in the sentence are randomly 
segmented to have crossover and mutation operations. The 
main idea is to swap the places between the two (in our 
example) individuals. Mutation works on an individual and 
crossover on two individuals. The probability by which an 
individual undergoes mutation and / or crossover is defined 
at the start. Initially, as the search space is vast, it is ideal to 
have large number of competing individuals mutated or 
crossover-ed. After a couple of iterations, the rate of 
mutation and crossover can be reduced. These steps are 
illustrated in the subsequent figures (the mathematical rigor 
within the process is omitted, so that the reader can 
appreciate the process rather than tangle him (or her) in the 
math).  

 

 
Figure 9: Individuals (chromosome) for "the man sings a song" 
(adopted from [8]) 

 
During the crossover operation, the parses which might 

have inconsistent number of words in the sentences are 
avoided and also precaution is taken so that the crossover-
ed segment should not again hold its previous syntactic 
category. 

The crossover shown in Figure 10 is performed about 
the determiner a.  

 

 
Figure 10: crossover operation keeping the syntactic category same 

 
Mutation must be performed on the individual who is 

unfit to represent the best parse.  As explained in Figure 11, 
mutation is done around the first VP, thus yielding the 
correct (best-ever) parse for the input sentence. 

 

 
Figure 11: mutation operation on the individual I 

 
In this manner the process continues till either the 

number of iterations specified are reached or the 
incremental improvement in the results is very less (this can 
be defined within the implementation). 

Experiments conducted elsewhere have proved that 
using GA for parsing has performance comparable as seen 
from other implementations without GA [7]. GA can help in 



                                                                                                                                                                       

                                                                                        6                                                                                                

reducing the search space by concentrating on a particular 
set of possible parse trees at a time. But, the biggest plus 
with GA is that the search space worked on does take into 
account all the possibly correct parses as none are discarded 
straight away during any of the steps.  

5. CONCLUSIONS 

In this paper the attempt was made to explain the possibility 
of using evolutionary algorithms, specifically genetic 
algorithms for parsing. Different experiments carried 
elsewhere [7][9] indicate a strong correlation in 
performance improvement using GAs. It has been also 
reported that the computational overheads are minimal. 

I feel that extensive experiments needs to be done 
before the GA patch can heal ambiguity wounds caused in 
parsing by the PCFG parsers. 

Also with vast computational resources available 
nowadays, parallel implementation of evolutionary parsing 
needs to attempt. But, definitely GAs promise to probe nw 
directions to investigate the statistical nature of the 
language. 

6. REFERENCES 

[1] C. Manning and H. Schutze, “Foundations of Statistical 
Language Processing,” The MIT Press, 1999. 

[2] D. Jurafsky and J. Martin, “Speech and Language Processing 
– An Introduction to Natural Language Processing, Computational 
Linguistics, and Speech Recognition,” Pearson, 2000. 

[3] D. Whitley, “Genetic Algorithms and Evolutionary 
Computing,” Van Nostrand’s Scientific Enclyopedia, 2002. 

[4] D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and 
Computing, vol 4, pp 65-85, 1994. 

[5] D. Vrajitoru, “Evolutionary Sentence Building for 
Chatterbots,” [online] http://citeseer.ist.psu.edu/596573.html. 

[6] M. Aycinea, M. Koshenderfer, and D. Mulford, “An 
Evolutionary Approach to Natural Language Grammar Induction,” 
Final Paper Stanford CS224N June 2003. 

[7] A. Roberts, “Machine Learning in Natural Language 
Processing,” October 2003 [online] 
http://www.comp.leeds.ac.uk/andyr/misc/latex/sessions/bibtex/bib
_example.pdf  

[8] L. Araujo, “Symbiosis of Evolutionary Techniques and 
Statistical Natural Language Processing,” IEEE Transactions on 
Evolutionary Computation, vol 8, no 1, pp 14-27, February 2004. 

[9] D. Kazakov, “Natural Language Processing Applications of 
Machine Language,” PhD Thesis, Czech Technical University, 
Prague, May 1999. 

[10] E. Charniak, “Statistical Techniques for Natural Language 
Parsing,” AI Magazine, vol 18, no 4, pp 33-44, August 1997. 

[11] L. Davis (Ed.), “Handbook of Genetic Algorithms,” Van 
Nostrand Reinhold, 1991. 

[12] M. King (Ed.), “Parsing Natural Language,” Academic 
Press,1983. 

[13] D. Dowty, L. Karttunen, and A. Zwicky, “Natural Language 
Parsing – Psychological, Computational, and Theoretical 
Perspectives,” Cambridge University Press, 1985. 

[14] Whitmore, J. and Fisher, S., “Speech during sustained 
Operations,” Speech Communication, vol. 20, pp. 55–70, 1996. 

[15] Machinese Language Tool [online] http://www.connexor.fi 

 

 

 


