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ABSTRACT 

This paper discusses the need for using discriminative 
training for language modeling and also discusses an 
approach to perform discriminative training on n-grams. 
The paper also explains the working principle of 
discriminative algorithms especially when applied to 
language modeling with the help of an example. The 
computational expense of doing discriminative training on 
language models is significantly high and hence researches 
around the world have come up with techniques to reduce 
the computational complexity. Some of the successful 
techniques use word lattices generated by an ASR system 
for discriminative training, and then update the language 
model probabilities on the word lattice so that they can be 
rescored easily. This paper reviews one such promising 
technique that estimates the parameters of a linear model 
using a variation of the well known perceptron algorithm. A 
WER reduction of 1.3% absolute on the switchboard task 
was reported by some researches using this algorithm. 

1. INTRODUCTION 

This paper describes a discriminative training technique that 
can be used for language modeling in an ASR system. State-
of-the-art ASR systems use n-grams to model the language 
found in the training corpus N-grams have been proven to 
be successful in modeling word sequences in a language, 
but it suffers from the fact that it requires infinite amount of 
training data to optimally model all words (unigrams) or 
words sequences (n-grams) [1]. Also, another important 
thing to consider is that optimality in the model will not 
guarantee optimality in word error rate [1]. Hence it is not 
sufficient if the language model truly represents the 
underlying word distributions. For example an n-gram 
feature will try to separate likely sequences from unlikely 
sequences, but will not consider the actual confusability 
between the word pairs. In other words the relative score of 
the features is more important than the actual scores [1]. A 
discriminative algorithm tries to overcome the confusability 
issue by minimizing an error function, and this is done by 
iteratively correcting the parameters in the model. Error 
function can be some metric that is used to judge the 
performance of the system. There are several algorithms 

that could be used to find the optimum parameter estimates, 
and in this paper we will discuss one such algorithm known 
as the perceptron algorithm. The basic framework will be 
based on a linear model assumption and uses the perceptron 
algorithm for parameter estimation. The perceptron 
algorithm is used on word lattices and the final model 
obtained can be represented as a weighted finite state 
automaton (WFSA). The WFSAs are then used to readjust 
the language model weights in the word lattice. This 
technique gave an improvement of 1.3% absolute on the 
switchboard data [2]. Section 2 describes the need for 
discriminative training for language modeling and discusses 
an overview of discriminative training applied to speech 
recognition [2]. Section 3 describes the linear model 
framework that will be adopted for discriminative training 
of language models and will use the perceptron algorithm 
for parameter estimation [2], [3]. 

2. THE NEED FOR DISCRIMINATIVE TRAINING 

A speech recognition system finds the most possible word 
sequence by using a combination of acoustic and language 
models. A statistical language model used in an ASR system 
is generally based on n-gram counts. N-grams are 
estimation of the word sequence distributions in a particular 
corpus. It has been experimentally observed that using 
higher order N-grams helps in decreasing the word-error-
rate of an ASR system, but with several orders increase in 
the search space [4],[5], and in order to have a good 
estimate of the probability distribution of n-grams, one must 
require infinite amount of training data. The closeness of the 
language model to the application domain is obtained by 
computing the entropy, and the effectiveness of the 
language model can be indirectly observed by computing 
the entropy factor [5],[6]. But even with a well estimated 
language model we cannot guarantee optimum WER. 

Since the WER is the main criterion, why not just 
optimize the models to decrease the WER instead of 
optimizing factors such as entropy? This was the main 
motivation behind discriminative training. An ASR 
system’s framework can be exploited in a manner such that 
we can apply discriminative techniques to train the acoustic 
and language models For example the Bayes rule 
formulation inherently gives provision for discriminative 
training. Let “A” be the acoustic observations and “W” the 
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word sequence. The probability of the word sequence “W” 
given the acoustic vector “A” has to be maximized .i.e. 
P(W|A). By Bayes rule this can be written as: 
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The speech recognizer finds the optimal word sequence 
by maximizing the P(W) (language model) and P(A|W) 
(acoustic mode) probabilities which ultimately maximizes 
the posterior probability P(W|A). The denominator P(A) can 
be treated as a constant. This is called as maximum a 
posteriori criterion, but unfortunately this technique suffers 
from the fact that lack of training data will cause the models 
to converge to a sub-optimal estimate. This happens because 
the MAP tries to increase the probability of the correct 
model but fails to reduce the probability of the incorrect 
model. This is where we require discriminative training to 
remove the confusability between word pairs, and this is 
done by minimizing the denominator term P(A) instead of 
treating it as a constant. P(A) can be represented as in 
Equation 2. 
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Computing the probability from Equation 2 is very 
expensive and also challenging, because training a single 
word sequence requires the system to consider all other 
possible sequences in the training set. Many algorithms 
have been proposed to ease the load of discriminative 
training. Determining all possible word sequences is a 
computationally intensive task, and we can use two 
techniques to do this: N-best list generation and word-lattice 
generation. Both these techniques are closely related, but it 
has been found that a word lattice is a much more 
representative of the true search space than the n-best list. 
Also, because the word lattices are represented in the form 
of an WFSA the ask of annotating language and acoustic 
model scores is done in a more efficient.manner In this 
paper we will see one such algorithm that is based on a 
linear model framework. 

For recognition, relative scores between models are 
more important than absolute scores [1]. Hence a measure 
that determines the amount of confusability between word 
pairs is a very important parameter. In order to find the 
confusable words, we will have to first determine these 
words by doing a dynamic programming alignment of the 
output hypothesis with the gold standard word transcription. 
The misrecognition measure that specifies the relative 
difference between two confusable words can be 
represented as shown in Equation 3. 

In Equation 3 “n” is a positive number and  is a 
distance measure which if greater than zero signifies 
misrecognition. This distance measure can be converted to a 
probability using a sigmoid function as shown in Equation 
4. 
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The sigmoid fit is the loss function which has to be 
minimized on the training set. Discriminative training is 
performed based on the recognition results obtained using a 
traditional language model which can be built using 
maximum likelihood estimation techniques. For every 
utterance in the training corpus the discriminative algorithm 
should increase the strength of correct word and weaken the 
incorrect words. Increasing or decreasing the strength of the 
N-grams is done by adding or negating counts respectively 
from the N-grams estimated in the original language model 
[1]. 

2.1. An example to demonstrate discriminative training 
on trigrams 

Let the training utterance be “The dog ate my little 
brother’s pudding” and the corresponding hypothesis 
through the recognizer is “The dog hates my little brother’s 
pudding”. The errors between the two sentences is found by 
dynamic programming alignment, and in this example the 
word “ate” and “hates” are confusable. The correct word 
expected is “ate”, and so the trigrams containing the word 
“ate” in the context as occurring in this sentence must be 
strengthened and the trigrams with the word “hates” in the 
context as occurring in the sentence must be weakened. This 
is achieved by adding a constant α  to the correct trigrams 
and subtracting a constant β  from the incorrect trigrams. 
The working of this simple algorithm is shown below and 
its influence on the model is shown in Figure 1: 

 
C(the, dog, ate) = C(the, dog, ate) + α  
C(the, dog, hates) = C(the, dog, hates) - β  
C(dog, ate, my) = C(dog, ate, my) + α  
C(dog, hates, my) = C(dog, hates, my) - β  
C(ate, my, little) = C(ate, my, little) + α  
C(hates, my, little) = C(hates, my, little) - β  
 
In the above example C(.) is the n-gram count for the 

sequence. This type of discriminative training can help in 
reducing the confusability between word pairs. Some 
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authors have used the above technique to fine tune language 
models and have obtained about 5%-25% relative 
improvements in recognition error rates [1]. The drawback 
of an approach such as this one is that it is computationally 
very expensive and therefore cannot be practical for real 
applications. Recently many researchers have worked on 
using word lattices for discriminative training of language 
models, a word lattice from a speech recognizer would 
contain several possible word hypothesis for a particular 
utterance, and only one of them contain the optimal word 
sequence with the correct time marks, and hence the rest are 
used to weaken the less probable n-gram sequences present 
in the language model The following section will focus on 
using a word lattice for discriminative training of language 
models. 

3. LINEAR MODEL FRAMEWORK AND 
PARAMETER ESTIMATION USING 

PERCEPTRON ALGORITHM 

The linear model framework has been widely used in 
various tasks related to NLP [2]. The basic objective is to 
learn a functional mapping f(x) to relate an input ‘x’ to an 
output ‘y’. In an ASR the input ‘x’ are the set of input 
utterances while ‘y’ is a set of all possible transcriptions for 
the given input utterance. The functional relationship f(x) is 
obtained as follows: 
 
• Training examples for i = 1…N ), ii yx(
• A generator function GEN which generates all possible 

hypothesis of a given input ‘x’ GEN(x). 
• A feature vector ),( yxφ  which is a mapping of all    (x, 

y) combination. 
• A parameter vector α , which basically holds the 

weights that will be multiplied with the feature vector. 
 

The functional mapping f(x) is obtained by using the 
above four parameters, and this is shown in Equation 5. 

 
Figure 1 Effect of corrective training on n-grams, the figure 
demonstrates the effect on trigrams used in the example 
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Here the GEN(x) is a set of all possible candidate 
hypothesis generated for an utterance input “x”. This can be 
approximated with a word graph generated by an ASR 
system. “y” will be a candidate sequence that maximizes the 
function f(x). α).,( yxΦ  is an inner product of the 
parameter vector and the feature vector. The parameter 
vector α is found by iterating over the training data. This is 
where the perceptron algorithm comes into picture. 

The perceptron algorithm used for this task is a variant 
of the classic perceptron algorithm found by Rosenblatt [2], 
[8]. A perceptron is a simple form of feed forward neural 
network that can be used for linear classification. The 
perceptron is a linear classifier that maps the input to an 
output by a function f(x) that is iteratively computed. The 
parameters are the weights that are assigned to every feature 
element in the feature vector. The general formula of a 
perceptron algorithm is given in Equation 6 

 
        bxwxf +>=< ,)( . (6) 

Where “w” and “x” are the weight and input vectors 
respectively, and “b” is the bias. A simple perceptron model 
is shown in Figure 2 

 
A variation of the conventional perceptron algorithm 

that will be used for language modeling is described below: 
 
Input: Training examples  ), ii yx

 
Figure 2 simple perceptron model 

(

Initialize the parameter vector 0=α  
Algorithm: 
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for t = 1 to T, i= 1 to N 

Calculate α).,(
)(

maxarg
zx

xGENz i
i

i Φ
∈

=z  

If  then )( ii yz ≠ ),(),( zixyx iii Φ−Φ+= αα  
Output is the parameter vector α  
 
The perceptron algorithm converges only on data that is 

linearly separable. By using the perceptron algorithm we 
actually work under the framework described for 
discriminative training in section 2. If  then the cost 
of the feature in  is increased by a constant and the cost 
of the feature in  is decreased by a constant. This type of 
corrective training will eventually helps in reducing the 
confusability among word pairs. Once the features on the 
model are updated the algorithm moves to the next 
utterance. After every pass on the training data, 
performance on the held out data set is evaluated. No further 
iterations are run if there is no improvement in the word 
error rate. The parameter set with the best performance is 
taken as the final model and will be used on the eval set. 

ii yz ≠

iz

iy

The convergence criterion for the perceptron algorithm 
can be explained by considering the generating function 
GEN(x) [2] and the correct known transcription “y”. 

A function )( ixNEG  is defined such that 
)( ixNEG = - and the margin of separability 

is defined by a parameter 
)( ixGEN }{ iy

δ, and this parameter is greater 
than zero if there are incorrect candidates in the hypothesis 
found in GEN(x). The parameter δcan be found by first 
determining a vector U such that ||U|| = 1. Hence the 
equation for finding the parameter δ is given in Equation 7: 

 
U. -U.  ),( ii yxΦ ),( zxiΦ ≥ δ. (7) 

The authors of the paper [2] have also found that the 
algorithm converges in just about one or two passes for the 
switchboard data. After every pass the weights and the 
corresponding features have to be updated. The features for 
n-grams are just the n-gram counts. Updating the original 
language model is done by constructing an WFSA for the 
discriminatively trained n-grams and then these are then 
used to update the language model weights in the word 
lattice. The updated word lattice is rescored for obtaining 
the error rate on the corrected language model [2]. 

A technique such as the perceptron algorithm can easily 
over train the language model and hence the performance on 
the test set will be poor, but it has been found that by 
averaging the parameter estimates obtained after each pass 
on every utterance, we can generalize the language model 
and hence obtain significant improvements on the test set. 

4. CONCLUSIONS 

Discriminative training on language model poses a lot of 
challenges when it comes to computational feasibility, even 
on the powerful modern day computers. In this paper we 
reviewed the discriminative approach applied to language 
modeling. We also saw the use of discriminative training on 
trigrams with the help of an example. From various 
literature surveys it was noted that a linear model 
representation for training the language models was an ideal 
place to start. The linear models require estimation of the 
parameter vector which was used as weights for the input 
feature vectors. This parameter vector was computed using 
a variation of the perceptron algorithm. It was found that the 
performance of the ASR system improved by 1.3% absolute 
by applying discriminative training using the perceptron 
algorithm [2]. 
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