

DISCRIMINATIVE TRAINING OF LANGUAGE MODELS

Sridhar. Raghavan
Mississippi State University
raghavan@cavs.msstate.edu

ABSTRACT

This paper discusses the need for using discriminative
training for language modeling and also discusses an
approach to perform discriminative training on n-grams.
The paper also explains the working principle of
discriminative algorithms especially when applied to
language modeling with the help of an example. The
computational expense of doing discriminative training on
language models is significantly high and hence researches
around the world have come up with techniques to reduce
the computational complexity. Some of the successful
techniques use word lattices generated by an ASR system
for discriminative training, and then update the language
model probabilities on the word lattice so that they can be
rescored easily. This paper reviews one such promising
technique that estimates the parameters of a linear model
using a variation of the well known perceptron algorithm. A
WER reduction of 1.3% absolute on the switchboard task
was reported by some researches using this algorithm.

1. INTRODUCTION

This paper describes a discriminative training technique that
can be used for language modeling in an ASR system. State-
of-the-art ASR systems use n-grams to model the language
found in the training corpus N-grams have been proven to
be successful in modeling word sequences in a language,
but it suffers from the fact that it requires infinite amount of
training data to optimally model all words (unigrams) or
words sequences (n-grams) [1]. Also, another important
thing to consider is that optimality in the model will not
guarantee optimality in word error rate [1]. Hence it is not
sufficient if the language model truly represents the
underlying word distributions. For example an n-gram
feature will try to separate likely sequences from unlikely
sequences, but will not consider the actual confusability
between the word pairs. In other words the relative score of
the features is more important than the actual scores [1]. A
discriminative algorithm tries to overcome the confusability
issue by minimizing an error function, and this is done by
iteratively correcting the parameters in the model. Error
function can be some metric that is used to judge the
performance of the system. There are several algorithms

that could be used to find the optimum parameter estimates,
and in this paper we will discuss one such algorithm known
as the perceptron algorithm. The basic framework will be
based on a linear model assumption and uses the perceptron
algorithm for parameter estimation. The perceptron
algorithm is used on word lattices and the final model
obtained can be represented as a weighted finite state
automaton (WFSA). The WFSAs are then used to readjust
the language model weights in the word lattice. This
technique gave an improvement of 1.3% absolute on the
switchboard data [2]. Section 2 describes the need for
discriminative training for language modeling and discusses
an overview of discriminative training applied to speech
recognition [2]. Section 3 describes the linear model
framework that will be adopted for discriminative training
of language models and will use the perceptron algorithm
for parameter estimation [2], [3].

2. THE NEED FOR DISCRIMINATIVE TRAINING

A speech recognition system finds the most possible word
sequence by using a combination of acoustic and language
models. A statistical language model used in an ASR system
is generally based on n-gram counts. N-grams are
estimation of the word sequence distributions in a particular
corpus. It has been experimentally observed that using
higher order N-grams helps in decreasing the word-error-
rate of an ASR system, but with several orders increase in
the search space [4],[5], and in order to have a good
estimate of the probability distribution of n-grams, one must
require infinite amount of training data. The closeness of the
language model to the application domain is obtained by
computing the entropy, and the effectiveness of the
language model can be indirectly observed by computing
the entropy factor [5],[6]. But even with a well estimated
language model we cannot guarantee optimum WER.

Since the WER is the main criterion, why not just
optimize the models to decrease the WER instead of
optimizing factors such as entropy? This was the main
motivation behind discriminative training. An ASR
system’s framework can be exploited in a manner such that
we can apply discriminative techniques to train the acoustic
and language models For example the Bayes rule
formulation inherently gives provision for discriminative
training. Let “A” be the acoustic observations and “W” the

 1

word sequence. The probability of the word sequence “W”
given the acoustic vector “A” has to be maximized .i.e.
P(W|A). By Bayes rule this can be written as:

)(
)()|(

)|(
AP

WPWAP
AWP

e
= . (1)

The speech recognizer finds the optimal word sequence
by maximizing the P(W) (language model) and P(A|W)
(acoustic mode) probabilities which ultimately maximizes
the posterior probability P(W|A). The denominator P(A) can
be treated as a constant. This is called as maximum a
posteriori criterion, but unfortunately this technique suffers
from the fact that lack of training data will cause the models
to converge to a sub-optimal estimate. This happens because
the MAP tries to increase the probability of the correct
model but fails to reduce the probability of the incorrect
model. This is where we require discriminative training to
remove the confusability between word pairs, and this is
done by minimizing the denominator term P(A) instead of
treating it as a constant. P(A) can be represented as in
Equation 2.

∑=
M

i
iie WPWAPAP)()|()(. (2)

Computing the probability from Equation 2 is very
expensive and also challenging, because training a single
word sequence requires the system to consider all other
possible sequences in the training set. Many algorithms
have been proposed to ease the load of discriminative
training. Determining all possible word sequences is a
computationally intensive task, and we can use two
techniques to do this: N-best list generation and word-lattice
generation. Both these techniques are closely related, but it
has been found that a word lattice is a much more
representative of the true search space than the n-best list.
Also, because the word lattices are represented in the form
of an WFSA the ask of annotating language and acoustic
model scores is done in a more efficient.manner In this
paper we will see one such algorithm that is based on a
linear model framework.

For recognition, relative scores between models are
more important than absolute scores [1]. Hence a measure
that determines the amount of confusability between word
pairs is a very important parameter. In order to find the
confusable words, we will have to first determine these
words by doing a dynamic programming alignment of the
output hypothesis with the gold standard word transcription.
The misrecognition measure that specifies the relative
difference between two confusable words can be
represented as shown in Equation 3.

In Equation 3 “n” is a positive number and is a
distance measure which if greater than zero signifies
misrecognition. This distance measure can be converted to a
probability using a sigmoid function as shown in Equation
4.

)(Ad i

n
n

ijj
jii WAP

M
WAPAd

/1

,
1

),(1),()(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−= ∑

≠
− (3)

()
))(exp(1

1)()(
θγ +−+

==
Ad

AdlAl
i

ii . (4)

The sigmoid fit is the loss function which has to be
minimized on the training set. Discriminative training is
performed based on the recognition results obtained using a
traditional language model which can be built using
maximum likelihood estimation techniques. For every
utterance in the training corpus the discriminative algorithm
should increase the strength of correct word and weaken the
incorrect words. Increasing or decreasing the strength of the
N-grams is done by adding or negating counts respectively
from the N-grams estimated in the original language model
[1].

2.1. An example to demonstrate discriminative training
on trigrams

Let the training utterance be “The dog ate my little
brother’s pudding” and the corresponding hypothesis
through the recognizer is “The dog hates my little brother’s
pudding”. The errors between the two sentences is found by
dynamic programming alignment, and in this example the
word “ate” and “hates” are confusable. The correct word
expected is “ate”, and so the trigrams containing the word
“ate” in the context as occurring in this sentence must be
strengthened and the trigrams with the word “hates” in the
context as occurring in the sentence must be weakened. This
is achieved by adding a constant α to the correct trigrams
and subtracting a constant β from the incorrect trigrams.
The working of this simple algorithm is shown below and
its influence on the model is shown in Figure 1:

C(the, dog, ate) = C(the, dog, ate) + α
C(the, dog, hates) = C(the, dog, hates) - β
C(dog, ate, my) = C(dog, ate, my) + α
C(dog, hates, my) = C(dog, hates, my) - β
C(ate, my, little) = C(ate, my, little) + α
C(hates, my, little) = C(hates, my, little) - β

In the above example C(.) is the n-gram count for the

sequence. This type of discriminative training can help in
reducing the confusability between word pairs. Some

 2

authors have used the above technique to fine tune language
models and have obtained about 5%-25% relative
improvements in recognition error rates [1]. The drawback
of an approach such as this one is that it is computationally
very expensive and therefore cannot be practical for real
applications. Recently many researchers have worked on
using word lattices for discriminative training of language
models, a word lattice from a speech recognizer would
contain several possible word hypothesis for a particular
utterance, and only one of them contain the optimal word
sequence with the correct time marks, and hence the rest are
used to weaken the less probable n-gram sequences present
in the language model The following section will focus on
using a word lattice for discriminative training of language
models.

3. LINEAR MODEL FRAMEWORK AND
PARAMETER ESTIMATION USING

PERCEPTRON ALGORITHM

The linear model framework has been widely used in
various tasks related to NLP [2]. The basic objective is to
learn a functional mapping f(x) to relate an input ‘x’ to an
output ‘y’. In an ASR the input ‘x’ are the set of input
utterances while ‘y’ is a set of all possible transcriptions for
the given input utterance. The functional relationship f(x) is
obtained as follows:

• Training examples for i = 1…N), ii yx(
• A generator function GEN which generates all possible

hypothesis of a given input ‘x’ GEN(x).
• A feature vector),(yxφ which is a mapping of all (x,

y) combination.
• A parameter vector α , which basically holds the

weights that will be multiplied with the feature vector.

The functional mapping f(x) is obtained by using the
above four parameters, and this is shown in Equation 5.

Figure 1 Effect of corrective training on n-grams, the figure
demonstrates the effect on trigrams used in the example

α).,(
)(

maxarg
)(yx

xGENy
xf Φ

∈
= . (5)

Here the GEN(x) is a set of all possible candidate
hypothesis generated for an utterance input “x”. This can be
approximated with a word graph generated by an ASR
system. “y” will be a candidate sequence that maximizes the
function f(x). α).,(yxΦ is an inner product of the
parameter vector and the feature vector. The parameter
vector α is found by iterating over the training data. This is
where the perceptron algorithm comes into picture.

The perceptron algorithm used for this task is a variant
of the classic perceptron algorithm found by Rosenblatt [2],
[8]. A perceptron is a simple form of feed forward neural
network that can be used for linear classification. The
perceptron is a linear classifier that maps the input to an
output by a function f(x) that is iteratively computed. The
parameters are the weights that are assigned to every feature
element in the feature vector. The general formula of a
perceptron algorithm is given in Equation 6

 bxwxf +>=< ,)(. (6)

Where “w” and “x” are the weight and input vectors
respectively, and “b” is the bias. A simple perceptron model
is shown in Figure 2

A variation of the conventional perceptron algorithm

that will be used for language modeling is described below:

Input: Training examples), ii yx

Figure 2 simple perceptron model

(

Initialize the parameter vector 0=α
Algorithm:

 3

for t = 1 to T, i= 1 to N

Calculate α).,(
)(

maxarg
zx

xGENz i
i

i Φ
∈

=z

If then)(ii yz ≠),(),(zixyx iii Φ−Φ+= αα
Output is the parameter vector α

The perceptron algorithm converges only on data that is

linearly separable. By using the perceptron algorithm we
actually work under the framework described for
discriminative training in section 2. If then the cost
of the feature in is increased by a constant and the cost
of the feature in is decreased by a constant. This type of
corrective training will eventually helps in reducing the
confusability among word pairs. Once the features on the
model are updated the algorithm moves to the next
utterance. After every pass on the training data,
performance on the held out data set is evaluated. No further
iterations are run if there is no improvement in the word
error rate. The parameter set with the best performance is
taken as the final model and will be used on the eval set.

ii yz ≠

iz

iy

The convergence criterion for the perceptron algorithm
can be explained by considering the generating function
GEN(x) [2] and the correct known transcription “y”.

A function)(ixNEG is defined such that
)(ixNEG = - and the margin of separability

is defined by a parameter
)(ixGEN }{ iy

δ, and this parameter is greater
than zero if there are incorrect candidates in the hypothesis
found in GEN(x). The parameter δcan be found by first
determining a vector U such that ||U|| = 1. Hence the
equation for finding the parameter δ is given in Equation 7:

U. -U.),(ii yxΦ),(zxiΦ ≥ δ. (7)

The authors of the paper [2] have also found that the
algorithm converges in just about one or two passes for the
switchboard data. After every pass the weights and the
corresponding features have to be updated. The features for
n-grams are just the n-gram counts. Updating the original
language model is done by constructing an WFSA for the
discriminatively trained n-grams and then these are then
used to update the language model weights in the word
lattice. The updated word lattice is rescored for obtaining
the error rate on the corrected language model [2].

A technique such as the perceptron algorithm can easily
over train the language model and hence the performance on
the test set will be poor, but it has been found that by
averaging the parameter estimates obtained after each pass
on every utterance, we can generalize the language model
and hence obtain significant improvements on the test set.

4. CONCLUSIONS

Discriminative training on language model poses a lot of
challenges when it comes to computational feasibility, even
on the powerful modern day computers. In this paper we
reviewed the discriminative approach applied to language
modeling. We also saw the use of discriminative training on
trigrams with the help of an example. From various
literature surveys it was noted that a linear model
representation for training the language models was an ideal
place to start. The linear models require estimation of the
parameter vector which was used as weights for the input
feature vectors. This parameter vector was computed using
a variation of the perceptron algorithm. It was found that the
performance of the ASR system improved by 1.3% absolute
by applying discriminative training using the perceptron
algorithm [2].

5. REFERENCES

[1] Kai-Fu Lee, Mingjing Li, Zheng Chen, “Discriminative
Training on Language Model”, Microsoft Research October 2000.

[2] B.Roark, M.Saraclar, M.Collins, “Corrective Language
Modeling For Large Vocabulary ASR with the Perceptron
Algotithm” Proceedings Acoustics, Speech, and Signal Processing,
2004

[3] M.Collins, “Discriminative Training Methods for Hidden
Markov Models: Theory and Experiments with Perceptron
Algorithms” In Proceedings of the Conference on Emperical
Methods in Natural Language Processing, pages 1-8,2002

[4] J. Picone, “Fundamentals Of Speech Recognition,”
http://www.cavs.msstate.edu/hse/ies/publications/courses/
ece_8463/

[5] X. Huang, A. Acero, and H.W. Hon, Spoken Language
Processing - A Guide to Theory, Algorithm, and System
Development, Prentice Hall, ISBN: 0-13-022616-5, 2001

[6] J. Deller, et. al., Discrete-Time Processing of Speech Signals,
MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000.

[7] Daniel Jurasfky, James H. Martin, Speech and Language
Processing, Prentice Hall, 2000.

[8] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification,
Second Edition, Wiley Interscience, ISBN: 0-471-05669-3, 2000.

[9] Saraclar, M.; Roark, B., “Joint Discriminative Language
Modeling and Utterance Classification”, In Proceedings Acoustics,
Speech, and Signal Processing, 2005.

 4

	1. INTRODUCTION
	2. THE NEED FOR DISCRIMINATIVE TRAINING
	2.1. An example to demonstrate discriminative training on trigrams
	3. LINEAR MODEL FRAMEWORK AND PARAMETER ESTIMATION USING PERCEPTRON ALGORITHM
	4. CONCLUSIONS
	5. REFERENCES

