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Abstract‍‍‍
Military and civilian experience has shown that long-duration assignments present increased risk of performance failures as the mission progresses. This is due to interruption of normal sleep cycles and psychological pressures of the work environment. There continues to be a need for a non-intrusive fatigue assessment system to successfully monitor the level of alertness of personnel during critical missions and activities. Experimental results on human voice show that specific phones have a predictable dependence on fatigue. Hence, precise phonetic identification and alignment are important to voice-based fatigue detection. This paper explores techniques for detecting fatigue from voice using speech recognition to obtain phonetic alignments. A confidence measure was used to filter out less likely word hypotheses from the ASR’s output. The results obtained from voice show strong correlation with other standardized tests such as Sleep Onset Latency and Sleep, Activity, Fatigue, and Task Effectiveness. 
1. Introduction
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The unique characteristics of the military and aviation environment make war fighters and civilian pilots particularly susceptible to fatigue. Being able to quickly and non-intrusively monitor an airman’s or soldier’s level of alertness prior to and during the undertaking of a critical mission activity would provide commanders with critical information regarding personnel assignments and certainly save lives and increase the likelihood of mission success. Unfortunately, there are no cognitive assessment tests that have been proven to be effective in the field under conditions of high stress and limited testing time per subject. This paper describes an approach to the development of a voice-based fatigue prediction system.
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2 and Derivative

Changes in the articulation of voiced sounds due to fatigue could be considered representative of changes in performance related to the control of the body’s voice production mechanisms. Change in discrete voice parameters (such as fundamental frequency and word duration) has been reported in the literature, however, no single voice characteristic demonstrates a consistent and reliable change as the speakers become fatigued [1]

 REF _Ref117354204 \r \h 
[2]

 REF _Ref106349697 \r \h 
[3]. Rather than study any one specific voice parameter, our approach is to observe a more holistic representation of the speech signal, the cepstral transformation associated with specific speech phonemes. The coefficients of this transformation, the Mel-frequency cepstral coefficients, (MFCC) are calculated in association with an ASR.
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Therefore, a straightforward way to automate this process is to use the output of an ASR system to identify the location of key phonemes, as shown in Figure 1. The time marks produced from the recognition segmentation are used to identify the corresponding MFCC vectors for a given phoneme, and these vectors are in turn used in the fatigue detection system. Since these systems tend to be deployed in extremely noisy environments, the ASR system must be extremely robust, and the fatigue detection system must be tolerant of recognition errors. We used a word posterior-based confidence measure to further improve the overall reliability of the system [4]. A reasonable improvement in fatigue analysis was observed when confidence measures were used for utterances which had out of vocabulary words. A threshold to reject incorrect or less probable words was determined by observing the region of convergence for the word posteriors.

2. using voice to detect fatigue
Whitmore and Fisher have shown that speech data follow the same trend as the data from cognitive tests and subjective measures of alertness [1]. They also noted a strong circadian trend, as the best voice performances occur during normal waking hours, and the worst performances occur during normal sleeping hours. Satio, et al. reported changes in the appearance of sound spectrograms from analysis of specific, repeated utterances as a pilot experienced hypoxia prior to a fatal F-104 accident [3]. These results support the contention that voice characteristics are directly related to the speaker’s level of performance which, in turn, is affected by his or her level of fatigue.
2.1. Correlation Amongst Features
The speech signal can be approximated by a convolution of an excitation with a linear digital filter. We hypothesize that fatigue is principally reflected in changes in the filter characteristics. Initial analysis confirmed a dependence between metrics related to the filter coefficients and fatigue. It is therefore necessary to process the recorded speech signal in a manner that will remove filtering effects from the excitation signal. Figure 3 illustrates how this is accomplished using cepstral analysis [5].
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Figure 2 is an illustrative example of how the MFCC vector changed over the four-day period of sleep restriction. The feature vector is generated by a single subject‘s utterance of the sound “t”. The legend of Figure 2 presents the correlation of the feature vector at each trial with the feature vector at the onset of testing (Trial 1). We refer to this metric as the Voice Correlation metric.
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Preliminary Fatigue Experiments

As part of a larger FAA study that involved a 34-hour period of sleep deprivation, six non-medicated subjects were asked to recite a list of 31 words at six testing times (10:00 am, 4:00 pm, 10:00 pm, 4:00 am, 10:00 am, and 4:00 pm) [6]. These testing times were selected to represent circadian high and low points in performance. Also measured during these testing times was sleep onset latency (SOL) which is the individual measurement component of the gold standard for sleepiness testing. This test involves having the test subject lie on a bed in a quiet, darkened room and telling the subjects to fall asleep. The time that it takes them to fall asleep, as measured by an electroencephalogram (EEG), is the sleep onset latency (SOL). Between tests subjects were allowed low arousal activities such as reading and watching TV.shows the group average change in both SOL and our Voice Correlation metric for the sounds ‘p’ and ‘t’ over the 34 hour testing period. The change in the voiced ‘p’ sound tracks in a manner similar to sleepiness while ‘t’ does not. The correlation coefficient between SOL and time awake is -0.825, between Vc(‘p’) and time is -0.89, and between Vc(‘t’) and time is -0.67. We estimate that time awake accounts for 68%, 79%, and 45% of the variation of SOL, Vc(‘p’) and Vc(‘t’) respectively.
All three metrics show a circadian peak at 16 hours, however, the SOL peak is significantly greater than the voice peaks. This difference in circadian sensitivity tends to reduce a correlation coefficient-based quantitative comparison. However, for purposes of comparison there is a 
correlation of -0.79 between SOL and Vc(‘p’) and ‑0.54 between SOL and Vc(‘t’).

3. generatING phone alignments
The general architecture of the fatigue detection system integrated with the automatic speech recognition system is shown in Figure 1. An ASR system provides time‑aligned word (and phone) hypotheses as output. The prediction software relies on ASR to provide MFCC vectors for specific phones, so it is critical that the correct phones are identified from the input stream of audio data. For fatigue detection, our main interest is in finding the presence of certain phonemes.

certain phones with a high degree of confidence. Word posteriors computed from word graphs can be used as a 

confidence estimate [7]. Experimental results show that the Voice Correlation metric trends more nicely with SOL test when word posteriors are used to filter out less likely words.

There is an elegant method to compute posterior probabilities from word-graphs [4]:
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 The probability of passing through the link W is calculated by determining the probability of reaching the start node of the word from the preceding nodes and also the probability of leaving the end node to any of the succeeding nodes. The former is called the forward probability and the latter as the backward probability. A forward-backward type algorithm is used to traverse through the lattice and compute the probabilities. The right-hand side term in Eq. 1 cannot be computed directly. So, it can be decomposed into likelihood and priors using Bayes rule [4]: 
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The numerator term of Eq. 2 is calculated by the forward-backward algorithm. The denominator term is the by-product of the forward-backward computation and is defined as the sum of all paths through the word graph. The purpose of the denominator term is to normalize the posterior values. The posteriors computed in this manner can be used as a confidence measure.
4. Experimental Results
Analysis was done on the voice data from two test subjects who underwent a night of sleep deprivation. At six test epochs, indicative of a “good” prediction performance. prediction performance of the CM. An example of this is shown in. Using an arbitrarily chosen CM threshold value of -75 to flag foreign words, the ROC curves have areas of prediction performance of the CM. An example of this is shown in. Using an arbitrarily chosen CM threshold value of -75 to flag foreign words, the ROC curves have areas of 0.85 and 0.80 respectively. These values are benchmarks indicative of a “good” prediction performance. 
The confidence metrics’ effect on 0.85 and 0.80 respectively. These values are benchmarks indicative of a “good” prediction performance. The confidence metrics’ effect on The confidence metrics’ effect on fatigue prediction performance is illustrated in Figure  and Figure . Figure  plots the subject’s normalized sleep onset latency (SOL) and voice-based fatigue prediction for the sound ‘p’ (Vc) at each of the six trials. As can be seen separated by 6 hours, these subjects each recited from two word lists. The ASR system was trained to recognize words from the training list. During separated by 6 hours, these subjects each recited from two word lists. The ASR system was trained to recognize words from the training list. During fatigue analysis, the speech recognition system was presented words from both the training list and the foreign list which contained words not in the training set. For both subjects, the confidence metric (CM) observed when the speakers recited from the first list had a higher average value and smaller standard deviation than that observed when the speaker recited from the foreign list. presents these results. The data presented in prediction performance of the CM. An example of this is shown in. Using an arbitrarily chosen CM threshold value of -75 to flag foreign words, the ROC curves have areas of 0.85 and 0.80 respectively. These values are benchmarks indicative of a “good” prediction performance. 
The confidence metrics’ effect on 

Table 1
, represents the degree of overlap between the CM distribution of training words and the CM distribution of foreign words. A receiver operating prediction performance of the CM. An example of this is shown in. Using an arbitrarily chosen CM threshold value of -75 to flag foreign words, the ROC curves have areas of 0.85 and 0.80 respectively. These values are benchmarks indicative of a “good” prediction performance. 
The confidence metrics’ effect on characteristic (ROC) curve was plotted to predict the true and false “correct word” prediction performance of the CM. An example of this is shown in. Using an arbitrarily chosen CM threshold value of -75 to flag foreign words, the ROC curves have areas of 0.85 and 0.80 respectively. These values are benchmarks indicative of a “good” prediction performance. 
The confidence metrics’ effect on fatigue prediction performance is illustrated in Figure  and Figure . Figure  plots the subject’s normalized sleep onset latency (SOL) and voice-based fatigue prediction for the sound ‘p’ (Vc) at each of the six trials. As can be seen in the figure, using voice data from only the training set list best tracks SOL. Using the voice input of both training set and foreign set words, with no confidence metric, little agreement is seen between voice and SOL. However, by using the CM (with a threshold setting of -75) to filter out foreign words the voice-based prediction is significantly closer to both the SOL and the “training input only curves”.
The cyclic patterns observed in Figure  are due to circadian rhythms. Over the 30 hours between trial number 1 and trial number 6, a full circadian cycle has elapsed. The SOL reflects the circadian influence of an individual’s need to sleep. A more direct way to match a speaker’s overall performance and circadian influences is to use the speaker’s body temperature and his or her time without sleep. This is accomplished using the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model [8]. Figure  shows speaker’s SAFTE score and voice-based fatigue prediction for the sound ‘p’ (Vc) at each of the six trials. As was the case with the SOL, the SAFTE model is best tracked by the “training list only” words. Using voice input containing mixed words (training set and foreign words), the CM-based word filter provides a significant fatigue prediction improvement over the use of the full mixed word input. 
5. Conclusions

In this paper we have presented a first attempt to measure fatigue detection using a speech recognition system. The correlation-based voice metric discussed in this paper compares favorably with the gold standard for measuring fatigue, sleep onset latency. The correlation measure also compares favorably to SAFTE measures. Confidence measures played a significant role in fatigue analysis on unseen words. Future work will be focused on more extensive evaluations on a much larger operational database, and on ways to improve the robustness of the system to recognition errors.
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Figure � SEQ Figure \* ARABIC �3�: Cepstrum analysis of a speech signal.
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Figure � SEQ Figure \* ARABIC �2�: Changes in the MFCC vector during four days of sleep restriction. As quantified in the legend, the vector during Trials 1 and 10 match better than the vector at Trial 21.


 











�
Subject 6�
�
�
Training�
Foreign�
�
Average CM�
-72.22�
-81.51�
�
CM Standard Deviation�
3.10�
11.34�
�
�
Subject 8�
�
�
Training�
Foreign�
�
Average CM�
-70.24�
-82.41�
�
CM Standard Deviation�
3.5�
15.16�
�



Table � SEQ Table \* ARABIC �1�: Analyzing the confidence metric distribution for two speakers on different set of words.
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Figure 4: Comparison of the trend between SOL and voice correlation for sound ‘p’ with and without a confidence metric.
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Figure 5: Comparison of the trend between SAFTE and voice correlation for sound ‘p’ with and without confidence metric.
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Figure � SEQ Figure \* ARABIC �1�: Integration of the fatigue detection system with an Automatic speech recognition system.
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