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Abstract‍‍‍
Recurrence plot is a visualization tool for analyzing experimental data. These plots often reveal correlations in the data that are not easily detected in the original time series. In this paper, we try to investigate the fact that two dynamical invariants, the second order Renyi entropy and correlation dimension, can be estimated from recurrence plots (RPs). The fact that these quantities are invariant even when we do not embed is interesting.  The other techniques for nonlinear analysis require that we embed the time series to some higher dimension. Evidence that the dynamical invariants such as Renyi entropy and correlation dimension are independent of the embedding parameters is presented. This paper also shows that the estimation of invariants by recurrence plots is robust. The application to prototypical system, (Rossler) is presented.
1. Introduction

In general, time series analysis begins or at least includes delay-coordinate embedding or SVD embedding, a well-established means of reconstructing the phase space to determine the hidden dynamics of the system that generated the time series. Provided, embedding is done correctly, the theorems involved guarantee that some of the properties of the underlying system are preserved. This is an extremely powerful correspondence, implying that the conclusions drawn from the reconstructed phase space are true for the original underlying system. However, there are some important caveats; one of the limiting factors is that correct embedding is rather difficult to construct. Therefore, methods for time series analysis that do not need embedding are extremely desirable. Evidence suggesting that recurrence plots is one such method is presented.
 First introduced by Eckman, Kamphorst and Ruelle [3], the recurrence plot (RP) is an analysis tool for experimental time series data. A Recurrence Plot (RP) shows all those points at which the state of the system recurs [2]. To say differently, recurrence plot reveals all the times when the phase space trajectory visits roughly the same area in phase space. Natural processes have various kinds of recurrent behaviors. The recurrence of states in the meaning that states are arbitrarily close after some time is the fundamental property of deterministic dynamical system and is typical for nonlinear or chaotic systems [2]. Thus a recurrence plot is a two dimensional representation of a single trajectory. The time series spans both ordinate and abscissa and each point 
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 on the plane is shaded according to the distance between the two corresponding trajectory points 
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. The initial purpose of RP’s was visual inspection of higher dimensional phase space trajectories. RP’s gives hints about the time evolution of these trajectories. The main advantage of using RP’s is that they can be applied to short and non-stationary data. The RP’s exhibit characteristic large scale and small-scale patterns. The former is termed topology and the latter as texture [2]. The topology gives a global impression, which can be characterized as homogeneous, periodic, drift and disrupted [2]. 

Homogeneous RP’s are typical of stationary and autonomous systems in which relaxation times are short in comparison to the time spanned by the RP. Oscillating systems have RP’s, which are diagonally oriented.  The drift is caused by slowly varying systems. Abrupt changes in events as well as extreme events cause disrupted RP’s. The example recurrence plot for Lorenz time series is shown in Figure 1. This figure is taken from [2].
Recurrence plots are intricate and visually appealing. They are useful for finding hidden correlations in highly complicated data. These are extremely useful, as they make no demands for stationary data. They can be used for those systems whose dynamics vary frequently. This paper extends, formalizes and systemizes the recurrence plot analysis that is based on theory [2] and by presenting some examples from experiments. An experiment was conducted by J. Iwanski [2]. on a particular data set in which they noticed that the appearance of the RP remained unchanged with changing embedding dimension. They tested on several unrelated data sets and surprisingly, they all exhibited similar properties. The recurrence plots for pendulum experiment for varying dimension are shown in Figure 2. Thus, they were able to say that the quantitative 
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aspects of recurrence plots were independent of the embedding dimension. They suggest Recurrence Quantification Analysis (RQA), which appears to be independent of the embedding dimension. 
This result makes it believe that the recurrence plots are more powerful than they appear to be. All the four experiments conducted by J. Iwanski proved this [2]. The data was first embedded in dimension 
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, using method of delay co-ordinates [8]. Contrary to the current time analysis methods, the evidence suggested that the 
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need only be equal to one if the data are to be analyzed using RQA. Embedding dimension one trivially means that there is no embedding at all.
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2. Recurrence Plots and rqa
This section gives an overview of the recurrence plots and recurrence quantification analysis. Some basic RP’s and the procedure of generating RP’s from time series is introduced. The standard first step in any time series analysis is to reconstruct the dynamics by embedding the one-dimensional time series data to some higher dimension  
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 using either time delay embedding or SVD embedding. Given a system whose topological dimension is
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, the sampling of the single state variable is equivalent to projecting the 
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dimensional phase-space dynamics onto one axis. Embedding is akin to unfolding the dynamics of the system. The Taken’s theorem guarantees that the reconstructed dynamics, if properly embedded, are equivalent to the true underlying dynamical system. That is, the dynamical invariants such as Lyapunov spectrum for example are identical [7]. The process of embedding is a subject of a large body of literature [1]. The basic problem with embedding is choosing two parameters – the optimum time delay and the reconstruction dimension. The process is difficult because one generally does not have an idea of the initial embedding dimension. All one has is one-dimensional time series from the experiment. Constructing a recurrence plot is not easy when we have only one-dimensional time series data. Given a trajectory in embedding space, one constructs RP by computing distance between every pair of points 
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 using an appropriate norm and then shading each pixel 
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according to that distance. 
2.1. Delay Coordinate Embedding
To reconstruct the dynamics, we begin with the experimental data consisting of time series 
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Delay-coordinate embedding of the unobserved and possibly multi-dimensional phase space dynamics from single observable 
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 is governed by two parameters, embedding dimension 
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 and the optimum time delay 
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. The resultant trajectory in 
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Where 
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for 
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 Note that using 
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 merely returns the original time series; embedding in one dimension is equivalent to not embedding at all. Proper choice of 
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 is critical for this reconstruction. Assuming that the delay-coordinate embedding is done correctly, we can assume that the RP of the reconstructed trajectory bears great similarity to the RP of true dynamics. Further, we expect that the properties of the reconstructed trajectory bear great similarity to the true underlying system. This is, in fact, the rationale behind the standard procedure of embedding the data before constructing the recurrence plot. 
2.2. Constructing the Recurrence Plot
Recurrence plots are based on the mutual distances between points on a trajectory. Therefore, the first and most crucial step is to select a norm
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. Maximum norm is used for computing the mutual distance [2]. In one dimension, the maximum norm is equal to Euclidean p-norm. The maximum norm is chosen for two reasons [2]: Ease of implementation and because the maximum distance arising in the recurrence calculations is independent of the embedding dimension 
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. This means that direct comparisons can be made between RPS generated using different values of 
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 without having to rescale the plots. Using Euclidean 2-norm, on the other hand, inter point distances increase with increasing dimension simply because the length along a new dimension can only contribute to the total distance. The distance 
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 as measured by Euclidean p-norm is non-decreasing with respect to 
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. The point of using maximum norm was to mitigate this effect [2].The recurrence matrix is defined as follows:
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Then an unthresholded recurrence plot (UTRP) of the time series is generated by plotting matrix 
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as a contour plot. Since current recurrence plot analysis methods focus on thresholded recurrence plots (TRP’s), the next step is to use UTRP to choose a threshold corridor, 
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. This is done by visually examining UTRP in order to find interesting structures, and then using these values from UTRP to get 
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. For data like Lorenz and Rossler this is pretty easy, but for other systems the organization may not be present. In this case, some ad hoc process of choosing a threshold corridor that’s represents some percentage of the total range of recurrence distances present in UTRP is used. Once threshold corridor is chosen, it is used to generate threshold recurrence matrix
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. Finally the TRP is generated by darkening all pixels 
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The choice of threshold corridor 
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 is critical; too large corridor results in saturation of the entire TRP where every pixel is black-while a corridor too narrow will result in an RP which is not adequately populated with enough points to support the analysis that follow. Besides being critically important, the selection corridor is also difficult to systemize in a sensible way [2]. Solutions are also unsatisfying. Webber and Zbilut, prescribe a threshold corridor corresponding to the lower ten percent of the entire distance range present in the corresponding UTRP. J.S. Iwanski suggested a procedure for finding this optimum threshold. He suggested a corridor boundary that isolates ‘interesting’ structures in the UTRP.  This procedure might be better than the one proposed by Webber as it tries to examine and isolate interesting structures across the range of recurrence distances – unlike most existing TRP approaches, which specify the corridors of the form
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. This is an important advantage, as it allows us to examine recurrence structures comprised of points that are not false neighbors (FNN) in the reconstructed space. 
2.3. Recurrence Quantification Analysis
The key issue in an attempt to use RP is to analyze an experimental data is that of quantifying the structure that appears in the plots. Trulla, Guiliani Zbilut and Webber devised a set of quantifying analyses, collectively called Recurrence Quantification Analysis (RQA), to address this issue. These techniques are most general approach to RP analysis [2] that have been developed.  However, its lumped statistical nature means that RQA cannot capture many of the spatiotemporal details of the dynamics. Moreover, the standard first step of embedding data, which we are trying to avoid, may be necessary. 
   In order to perform RQA on a data set, TRP is first constructed choosing an appropriate threshold corridor 
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 as described previously and then this TRP is used to compute the five statistical values. The first of these statistics, termed percentage recurrence (REC), is simply the percentage of points on the TRP that are darkened. That is those points whose spacing falls with in the corridor. This percentage is precisely what is used to compute the correlation dimension of the data set – Kaplan and Glass [5], for instance define correlation dimension as the slope of the linear region in the S shaped percentage recurrence Vs corridor width plot. RQA, however, stops short of extending the analysis beyond the simple calculation of the percentage of dark points on the plots. The second RQA statistic is called percentage determinism (DET). It measures the percentage of recurrence points in the TRP contained in lines parallel to the main diagonal. The main diagonal is excluded from these calculations because points are trivially recurrent. Diagonal lines are included in the analysis if and only if they meet or exceed some prescribed minimum length threshold. Intuitively, DET measures how organized a TRP is. The third RQA statistic, called entropy, is closely related to percentage determinism. Entropy (ENT) is calculated by binning the diagonal lines defined previously according to their lengths and using the formula:
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where 
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is the number of bins and 
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is the percentage of all lines that fall into bin 
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. According to Shannon’s information theory [9], the predictability decreases with increasing entropy, so one would expect low values of entropy for TRP. The fourth RQA statistic is called trend. Trend is intended to detect non-stationarity in the data. The final RQA statistic is 
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is the longest line found during the computation of DET. Eckman et al. claim that the line lengths on RPs are directly related to the direct estimate of the largest Lyapunov exponent. Short 
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values are therefore indicative of the chaotic behavior. In a purely periodic signal, the opposite extreme - lines tend to be very long, so 
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 is very small. RQA is probably the best current set of RP analysis [2]. How ever, lumped statistics of RQA do not measure much of qualitative structure of the recurrence plots. 
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3. Qualitative appearance of TRP’s for various systems
One of the most puzzling characteristic of the recurrence plot is structural stability they exhibit with increasing embedding dimension. That is, qualitative features that are visible in RPS generated by using 
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= 1 often persists in RP’s that are based on higher embedding dimensions- even in complex, high dimensional data sets. This may appear counter intuitive, as the delay-coordinate embedding process is designed to ‘unfold’ the underlying dynamics from one-dimensional time series. Following this line of reasoning, it might be natural to expect that the RP structure of a formally correct reconstruction 
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would be different from RPs of partially unfolded dynamics: that the RP structure would change with embedding dimension until the “correct” 
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 was reached. With some examples we investigate the variation in recurrence plots with varying dimension. To demonstrate the structural stability of the RPs with increasing dimension, TRPs of two systems are presented.  Figure 2 shows the TRPs for embedding dimension 1-4 for pendulum experiment. Two more much common data sets: the Lorenz time series and Rossler time series are taken and the embedding dimension is varied from 1 to 4. TheTRPs of both the systems are shown in Figure 4 and Figure 5. One can observe the striking similarity in all the recurrence plots.
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The major difference is in the gradual fading of the four TRPs as the 
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increases. This is largely due to the fact that an identical threshold corridor was used to generate each plot. The distance between any two points on delay0-coordinate reconstructed trajectory is non-decreasing with increasing 
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The fact that the qualitative features of RPs are independent of the embedding dimension in all of the (very different) data sets that we have examined is highly suggestive. Recurrence plots expose the distance relation ships in the data [2] relationship that should perhaps change as the dynamics are unfolded by the embedding process. An obvious ansatz is that the time series is itself one dimensional., perhaps it makes sense that recurrence patterns present in one embedding capture essential properties. 
The RQA is applied to Lorenz time series with embedding dimension 1-4 and the plots of some of the statistic is presented. The vertical lines of the plots below oare for three periodic windows: 99.524 < r < 100.795, 145 < r < 166 and r > 214.4. 

The fluctuations in the values at the beginning are due to transient behaviour of the signal. The flat areas at the very left of 
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plots – which grow shorter as 
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 increase –might also lead one to conclude that the signal is periodic at r values just greater than 28. All the plots are from [2].It is clear from Figure 6 that 
Its is worth noting that the DET results are highly sensitive to the choice of minimum line length. 
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Figure � SEQ Figure \* ARABIC �7�: The RQA statistic � EMBED Equation.3  ���for four embedding dimensions 1-4. The initial flat line in the plot corresponds to long initial periodic regime of the signal for which the positive Lyapunov exponent is zero.
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Figure � SEQ Figure \* ARABIC �5�: These four TRPs are generated from numerical integration of the Lorenz time series. The lightening effect with increasing dimension is apparent. 
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Figure � SEQ Figure \* ARABIC �9� a) Sample of Rossler time series b) reconstructed attractor c) dependence of correlation entropy on recurrence rate d) dependence of correlation dimension on the recurrence state.
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Figure � SEQ Figure \* ARABIC �1�: The Lorenz time series and corresponding recurrence plots. The recurrence to the left is UTRP and to the right is TRP.
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Figure � SEQ Figure \* ARABIC �2� : These four recurrence plots are for pendulum data with embedding dimension 1-4 respectively. All the four have identical corridors and time delay values. Observe striking similarity.
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Figure � SEQ Figure \* ARABIC �4�: These four RPs are generated from the numerical integration of Rossler system by varying embedding dimension from 1-4. Note the striking similarity
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Figure � SEQ Figure \* ARABIC �3�: An example showing that RQA results on structurally dissimilar TRPs can be almost identical. These are two very different TRP’s, one on the left is from Rossler and the one on the right is sine signal with varying period. They have near –equal REC (2.1 %) and DET (42.9 %)





�








Figure � SEQ Figure \* ARABIC �8� The RQA statistic REC for Lorenz time series for embedding dimension 1-4. There is little variation between the four plots.
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