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1    ABSTRACT

Principal Components Analysis (PCA) is commonly used in many fields including fea
extraction and data compression. Independent Components Analysis (ICA) is a new tech
that has been demonstrated to offer improved performance for problems such as blind
separation where higher-order statistics of the data are important. The goal of this projec
investigate the theoretical relationship between PCA and ICA, and demonstrate the nature
relationship on several classes of problems.

2    INTRODUCTION

2.1   Principal Components Analysis

Principal component analysis [1] is commonly used for feature extraction. According to
technique, the first principal component of a data set is the direction along which there is la
variance over all samples. The basic idea of this technique is that the direction along which
is maximum variation is most likely to contain the information about the class discrimina
Mapping the given data set into this space will make the difference between classes
significant.

PCA maps the data set using an orthonormal matrix to the feature space, w

is the original data set, is the output data set. T

transformation matrix can be achieve by , where and are the eigenve

matrix and the eigenvalue matrix of the covariance matrix of the source data . Since
orthonormal matrix, in the transformed space, we have

The Euclidean distance can be used as the measure of the distance between two data.

Only the mean and the covariance will be used to find out the transformation matrix.

2.2   Independent Components Analysis

Independent Component Analysis is very similar to PCA. Given a data set

ICA will find an matrix , which will minimize the average mutual information of th

output matrix . The difference is transformation matrix is not required to

orthogonal, as shown in figure 1. The computation of this transform involves higher-o
statistics of the data, so it’s well used for problems such as blind source separation where h
order statistics of the data are important.

2.3    Algorithm for ICA

My approach to find the ICA transformation follows that described in [2]. Since a closed-f
solution is not tractable, I used a stochastic gradient ascent algorithm. The idea is pick a non
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Figure 1. A comparison between transformations found by PCA and ICA when the data is uniformly
distributed within the diamond-shaped region.
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function , which has the same covariance matrix as the underlying independent compo

maximizing the joint entropy of  will lead to ICA solution.

The specific form of the stochastic gradient ascent that is used involves a learning rul
changes weights according to the gradient of the entropy [2]:

in which is computed as , and .

3    EXPERIMENTS

3.1   Data
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As showing in figure 2, the original data contains two classes. If use the 1-NNR classification rule,
the data to the left hand of the separating hyperplan will be classified into class 1, and the data to
the right hand of the separating hyperplan will be classified into class 2.
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Figure 2. The original data
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Using PCA, I computed the transformation matrix and for data set 1 and data

respectively. For each given test data point , I transformed it to and separately. Th

the transformed space, I computed the Euclidean distance between the test data point a
mean value of each class and . Using the 1-NNR rule, belongs to the class which r

in the smaller distance. The result of PCA is showing in figure 3:

Φ1 Φ2

x y1 y2

d1 d2 x
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Figure 3. The result using PCA
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Using ICA, I followed the same procedure as what I did using PCA. The result is showing in figure
4:

4    SUMMARY
Both PCA and ICA can improve the performance of data discrimination problem than 1-NNR rule.
Ideally, since the transformation matrix that ICA find is not required to be orthogonal, so ICA will
give a better result than PCA do. Since ICA uses all order of statistics, it is more useful than PCA
while the higher-order statistics of data are important.
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Figure 4. Result using ICA
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