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Abstract

This paper presents a- Bayesian clustering method-
ology that partitions temporal data into homoge-
neous groups, and constructs state based profiles for
each group in the hidden Markov model (HMM)
framework. We propose a Bayesian HMM clustering
methodology that improves upon existing HMM clus-
tering algorithm by incorporating HMM model size
selection into the clustering control structure. Ex-
perimental results indicate the effectiveness of our
methodology.

1 Introduction

Unsupervised classification, or clustering, derives
structure from data by objectively partitioning data
into homogeneous groups so that the within group ob-
ject similarity and the between group object dissim-
ilarity are optimized simultaneously. Categorization
and interpretation of structure are achieved by ana-
lyzing the models constructed in terms of the feature
value distributions within each group. In many real
applications, the dynamic characteristics, i.e., how a
system interacts with the environment and evolves
over time, are of interest. Such behavior or charac-
teristic of these systems is best described by temporal
features whose values change significantly during the
observation period. Qur goal for temporal data clus-
tering is to construct profiles of dynamic processes by
" constructing and analyzing well defined, parsimonious
models of data.
We assume that the temporal data sequences that de-
fine the dynamic characteristics of the phenomenon
under study satisfy the Markov property, and the
data generation may be viewed as a probabilistic walk
through a fixed set of states. We characterize dy-
namics of objects in individual clusters using hidden
Markov models.
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Our ultimate goal is to use the extracted HMM mod-
els as an accurate explainable representation of the
system dynamics. It is important for our clustering
system to determine the best partitions of the data,
and the best model structure, i.e., the number of states
in a model, to characterize the dynamics of the homo-
geneous data within each cluster. We approach these
tasks by (i) developing an explicit HMM model size
selection procedure that dynamically modifies the size
of the HMMs during the clustering process, and (ii)
casting the HMM model size selection and partition
selection problems in terms of a Bayesian model selec-
tion problem.

2 HMM Definitions

A HMM is a non-deterministic stochastic Finite State
Automata. The basic structure of a HMM consists
of a connected set of states, S = (S1,5%,...,5,). We
use first order HMMs, where the state of a system at
a particular time ¢ is only dependent on the state of
the system at the immediate previous time point, i.e.,
P(StISt_l, St_2,.eey Sl) = P(S,;lSt_l). In addition, we
assume all the temporal feature values are continu-
ous, therefore, we use the continuous density HMM
(CDHMM) representation where all temporal features
have continuous values. A CDHMM of n states for
data having m temporal features can be characterized! -
in terms of three sets of probabilities [4]: the initial
state probabilities, the transition probability, and the
emission probabilities. The initial state probabilities,
7 of size n, defines the probability of any of the given
states being the initial state of the given sequence.
The transition probability matrix, A of size n x n, de-
fines the probability of transition from state ¢ at time
t, to state j at the next time step. And the emission

1We assume the continuous feasures are sampled at a pre-
defined rate, and the temporal feasure values are defined as a
sequence of values.
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probability matrix, B of size n x m, defines the prob-
ability of generating feature values at any given state.
For CDHMM, the emission probability density func-
tion of each state is defined by a multivariate Gaussian
distribution.

3 Clustering with HMMs

A clustering algorithm for temporal data that incor-
porates HMM model size selection can be described in
terms of a search procedure with four nested loops:
loop 1: derive the number of clusters in a partition;
loop 2: the object distribution to clusters in a given
partition size;

loop 3: the HMM model sizes for individual clusters
in the partition; and .

loop 4: the HMM parameter configuration for the in-
dividual clusters.

A primary limitation of the earlier work on cluster-
ing with HMM models ([5], [1], [6]) is that for search
step 1, no objective criterion measure is used to au-
tomatically select the cluster partition based on data.
A pre-determined threshold value on data likelihood,
or a post-clustering Monte-Carlo simulation, is used
instead. Another limitation is that they assume a pre-
specified and uniform HMM size for all models in the
intermediate and final clusters in a partition. There-
fore, search step 3 does not exist in those systems.
Once a model size (i.e., the number of states in the
HMM model) is selected, step 4 is invoked to esti-
mate model parameters that optimize a chosen crite-
rion. We use the well known Maximum Likelihood
(ML) parameter estimation method, the Baum-Welch
procedure [4] to iteratively guide the parameter search
process to the locally maximum values.

4 The Bayesian
Methodology

Clustering

4.1 Bayesian Model Selection

From Bayes theorem, the posterior probability of the
model, P(M|X), is given by: P(M|X) = ZIQPCUM),
where P(X) and P(M) are prior probabilities of the
data and the model respectively, and P(X|M) is the
marginal likelihood of the data. For the purpose
of comparing alternate models, we have P(M|X) «
P(M)P(X|M). Assuming none of the models consid-
ered is favored a priori, P(M|X) «« P(X|M). That is,
the posterior probability of a model is directly propor-

tional to the marginal likelihood. Therefore, the goal
is to select the mixture model that gives the highest
marginal likelihood.

Given the parameter configuration, 8, of a model
M, the marginal likelihood of the data is computed
as P(X|M) = fe P(X|8, M)P(8|M)d6. When parameters
involved are continuous valued, as in the case of
CDHMM, the integration computation often becomes
too complex to express in a closed analytic form. In
this paper, we look at one efficient approximation
methods: the Bayesian information criterion (BIC)
[2], where in log form, marginal likelihood is approxi-
mated by:

logP(M|X) ~ logP(X|M, 6) — gzogN.

d is the number of parameters:m the model, N is the
number of data objects, and ¢ is the ML parameter
configuration of model M. logP(X|M,6), the data
likelihood, tends to promote larger and more detailed
models of data, whereas the second term, —%logN ,1s
the penalty term which favors smaller models with less
parameters. BIC selects the best model for the data
by balancing these two terms.

4.2 Bayesian Clustering

In model-based clustering, it is assumed that data
is generated by a mixture of underlying probabil-
ity distributions. The mixture model, M, is rep-
resented by K component models and a hidden,
independent discrete variable C, where each value
1 of C represents a component cluster, modeled
by A;. Given observations X = (z1,---,zn), let
fr(z:|0k, M) be the density of an observation z; from
the kth component model, A, where 8 is the cor-
responding parameters of the model. The likelihood
of the mixture model given data is expressed as:
P(X|1,-+ 8K, Pr,-++, Pr) = Hf;l kazl Py - fr(@ilbi, Mk,
where Py is the probability that an observation be-
longs to the kth component(P, > O,ZZ;l P =1).
Bayesian clustering casts the model-based clustering
problem into the Bayesian model selection problem.
Given partitions with different component clusters,
the goal is to select the best overall model, M, that
has the highest posterior probability, P(M|X).

5 Bayesian HMM Clustering

We have adapted Bayesian clustering to the CDHMM
clustering problem, so that: (i) components of a
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Figure 1: HMM model size selection

Bayesian mixture model are represented by CDHMMs,
and (i) fix(X;|0k,Ax) in data likelihood computation
computes the likelihood of a multi-feature temporal
sequence given a CDHMM.

First, we describe how the general Bayesian model se-
lection criterion is adapted for the HMM model size
selection and the cluster partition selection problems.
Then we describe how the characteristics of these cri-
terion functions are used to design our heuristic clus-
tering search control structure.

5.1 Criterion Functions
5.1.1 Criterion for HMM Size Selection

The HMM model size selection process picks the HMM
with the number of states that best describe the data.
We use Bayesian model selection criterion to select the
best HMM model size given data.

Applying the BIC approximation, marginal likelihood
of the HMM, A, for cluster k is computed as:

logP(Xx|Me) & 3° 1%, logP(Xij Ik, ) — %logNi,

where Ny is the number of objects in cluster k, di is
the number of parameters 2 in A, and 0 is the ML
parameters in Ag.

Figure 1 illustrates how BIC works for HMM model
size selection. Data generated on a 5-state HMM is
modeled using HMMs of sizes ranging from 2 to 10.
BIC values corresponding to the different HMM sizes
are plotted. The dashed lines show the likelihood of
data for the different size HMMs. The dotted lines
show the penalty for each model. And the solid lines
show BIC as a combination of the above two terms.
We observe that as the size of the model increases, the
model likelihood also increases and the model penalty

2Significant parameters include all the parameters for emis-
sion probability definitions and only the initial probabilities and
transition probabilities that are greater than a threshold value
t, t is set to 10~ for all experiments reported in this paper.

and parameter prior decreases monotonically. BIC has
its highest value corresponding to the size of the orig-
inal HMM for data.

5.1.2 Criterion for Partition Selection

In the Bayesian framework, the best clustering mix-
ture model, M, has the highest partition posterior
probability (PPP), P(M|X). We approximate PPP
with the marginal likelihood of the mixture model,
P(X|M).

For partition with K clusters, modeled as Ay,---, Ak,
the PPP computed using the BIC approximation is:

logP(X|M) ~ TN, zog[zf:l Pi - P(X:|0k, Ax)]

K+3°  dy
— 2s=1—-[ogN,

where 6}, and d;. are the ML model parameter configu-
ration and the number of significant model parameters
of cluster k, respectively. P is the likelihood of data
given the model for cluster k. When computing the
data likelihood, we assume that the data is complete,
i.e., each object is assigned to one known cluster in
the partition. Therefore, P, = 1 if object X; is in
cluster k£, and P, = 0 otherwise. The best model is
the one that balances the overall data likelihood and
the complexity of the entire cluster partition.

Figure 2 illustrates how BIC works for cluster parti-
tion selection: given data consisting of an equal num-
ber of objects from four randomly generated HMMs,
the BIC scores are measured when data is partitioned
into 1 to 10 clusters. At first when the number of
clusters is small, because the improvements of data
likelihood dominates the change of the BIC values,
i.e., the BIC values monotonically increase as the size
of the partition increases. It reaches the peak value
when the size of the partition corresponds to the true
partition size, four. Subsequently, the improvements
of data likelihood becomes less and less significant,
the penalty on model complexity term dominate the
change of the BIC measure, and it decreases monoton-
ically as the size of the partition continues to increase.

5.2 The Clustering Control Structure

Given the characteristics of the BIC criterion in parti-
tion selection (step 1) and HMM model size selection
(step 3), we employ a sequential search strategy for
both search steps 1 and 3. We start with the simplest
model, i.e., a one cluster partition for step 1 and a
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Figure 2: Cluster partition selection

one state HMM for step 3. Then, we gradually in-
crease the size of the model, i.e., adding one cluster to
the partition or adding one state to the HMM, and re-
estimate the model. After each expansion, we evaluate
the model using BIC. If the score of the current model
decreases from that of the previous model, we may
conclude that we have just passed the peak point, and
accept the previous model as our final model. Other-
wise, we continue with the model expansion process.

To find the best partition structure, i.e., object distri-
bution in clusters, for a given size (K) partition, we
first select K seeds that are likely to form the centroids
of the K clusters in the partition. A seed includes a
set of k objects, (k = 3 for all experiments shown
here). The purpose of including more than one object
in each seed is to ensure that there is sufficient data
to build a reliable initial HMM. The first object in
a seed is selected by choosing an object that has the
least likelihood given all cluster models in the current
partition (the first object in the first seed is selected
randomly from the data set). The remaining objects
in the seed are the ones have the highest likelihood
given the HMM model built based on the first object.
We apply HMM model size selection for each chosen
seed for find the best model size for each cluster.

Next, search step 2 distributes objects to individual
clusters such that the overall data likelihood given the
partition is maximized. We assign object, z;, to clus-
ter, (6, Ak ), based on its sequence-to-HMM likelihood
measure (4], P(z;|0k, \x). Individual objects are as-
signed to clusters whose model provides the highest
data likelihood. If after one round of object distri-
bution, any object changes its cluster membership,
models for all clusters are updated to reflect the cur-

K_’{‘able 1: The BHMMC control structure

do
Select K seeds
Apply HMM model size selection on each seed
Object redistribution:
do
Distribute objects to clusters with the highest
likelihood
Apply HMM parameter estimation for all clusters
while there are objects change cluster memberships
Compute PPP of the current partition
K = K+1
while Current PPP > PPP of the previous partition
Accept the previous partition as the final cluster partition
Apply HMM model size selection on the final clusters.

rent data in the clusters. Then, all objects are redis-
tributed based on the set of new models. Otherwise,
the distribution is accepted. After the objects are dis-
tributed into clusters, for a HMM model size, step 4
estimates the model parameters for each cluster us-
ing the Baum-Welch procedure. Table 1 gives the
complete description of the Bayesian HMM clustering
(BHMMC) algorithm.

6 Experimental Results

In this section, we experimentally validate the BH-
MMC algorithm with artificially generated data.
First, we describe how synthetic models and data are
generated for the experiments. Then, we give the per-
formance indices we use to evaluate the experimental
results. Finally, we analyze the experimental results
using the proposed performance indices.

6.1 Data

To construct HMM models of different sizes, first, we
assign state definitions by randomly selecting mean
and variance values from value ranges [0, 100] and
[0,25] respectively. Then we assign state transition
probabilities and initial probabilities by randomly
sampling from value range [0, 1], and then normalize
the probabilities.

Based on each model, we randomly generated 40 ob-
jects, each object is described by two temporal fea-
tures, and the sequence length of each feature is set
to 100. For experiment 1, we generated five differ-
ent HMMs for each of the three model sizes: 5, 10,
and 15 states. Then, a separate data set is created
based on each of these 15 HMMs. For experiment 2,
we constructed three groups of data sets. Individual
data sets in each group contain three models, each of
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Table 2: BIC for HMM model size selection

Criterion |- True HMM model size

measure 5 [ 10 T 15
[ BIC |50 | 10(0) | 13.22.2) |

a different size, i.e., 4, 6, and 8 states. In group 1,
the three models all have a pairwise model distance
between [-100, 0] (distance level 1), models in group
2 have pairwise model distance between [-400, -300]
(level 2), and models in group 3 have pairwise dis-
tance between [-700, -600] (level 3). Models in group
1 are more difficult to separate than those in group
2, which are more difficult to separate than those in
group 3. Five data sets, i.e., five sets of three HMM
models, are constructed for each group according to
the pairwise model distance requirement. Given each
set of three HMM models, one data set is created by
combining data objects generated from the 3 different
HMMs. For these combined data sets, we know the
number of models involved, and the model size and
parameter configuration of each. The goal of cluster-
ing here is to rediscover the correct partition model
based on data.

6.2 Performance Indices

In addition to the partition posterior probability, we
use two other performance indices to evaluate the
quality of the cluster partitions generated: (i) Parti-
tion Misclassification Count (PMC), which com-
putes the number of object misclassified when com-
pared to the true object to cluster assignment in the
generative partition model. The smaller the sum of the
misclassification counts for all objects in a partition,
the better quality the partition i$ in comparison; and
(ii) Between Partition Similarity (BPS) which
measures the similarity between the derived partition
and the generative partition in terms of the likeli-
hood of temporal sequences generated by one partition
given the other partition, and vice versa. the larger
the BPS, the more similar the partition in comparison
is to the true partition, thus the better quality is the
partition. Details on these evaluation criterions can
be found in (3].

6.3 Experiments

The first experiment studies the effectiveness of BIC
in selecting HMM model sizes based on data. Table

Table 3: Cluster partition size rediscovered given a
three cluster partition

Data Fixed HMM size clustering Varying HMM
Set 3 T 6 [ 10 size clustering
Tevel 3 | 3(0) 3(0) | 2.8(0.45) —3(0)
Tevel 2 | 3(0.7) | 3.2(0.45) | 2.6(0.54) 3(0)
Tevel 1 | 2.8(0.83) | 2.8(0.45) | 2.2(0.45) 3(0)

Table 4: PMC on results obtained from data three
cluster partition model

Data Fixed HMM size clustering Varying HMM
Set 3 6 [ 10 size clustering
level 3 0(0) 0(0) 16(35) 0(0)
level 2 | 17(35.28) | 1 (2.23) | 32(43.8) 0(0)
Tevel 1 | 39.6(40) | 16(35) | 64(35.8) 0(0)

2 shows average model sizes and the standard devia-
tions of the HMMs derived from data. For 5-state and
10-state HMMs, BIC selected HMMs that have sizes
identical to the generative HMMs. For 15-state gen-
erative HMMs, the sizes of the derived models differ
among trials, and have an average size smaller than
that of the true HMMSs. This is attributed to the well
known problem with the Baum-Welch ML parameter
estimation procedure. It sometimes converges to a
locally maximum parameter configuration, which pre-
maturely terminates the sequential HMM model size
search process.

The second experiment studies the effect of the HMM
model size selection on cluster partition generation.
Two different clustering methods are compared: (1)
the BHMMC which performs dynamic HMM model
size selection, and (2) a clustering algorithm that uses
a pre-determined, fixed size HMM throughout clus-
tering. Table 3 shows the mean and standard de-
viation of the partition size and the PMC score for
partitions generated for different data sets. BHMMC
with HMM model size selection significantly outper-
forms clustering with fixed HMM sizes. When HMM
model size is applied, the BHMMC algorithm com-
pletely rediscovered the correct partition models on
all trials. When model size selection is not applied,
the partitions generated with too small a fixed HMM,
i.e., a 3-state HMM, are considered better than those
generated with too big a fixed HMM, i.e., a 15-state
HMM. Partitions of better quality are generated when
the fixed HMM size equals the average size of the four
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Figure 3: HMM cluster using HMM model size selec-
tion vs. using fixed HMM model size

generative HMMs.

When the size of the HMMs are fixed and small, they
do not possess the ability to discriminate among ob-
jects that are generated from multiple, more complex
HMMs. Therefore, objects from different generative
HMMs are grouped into the same cluster in the final
partition. On the other hand, when using fixed size
HMMs that are too big, adding one new cluster to
the partition incurs a large model complexity penalty
that sometimes can not be offset by the data likeli-
hood gain. When the HMM model selection proce-
dure is applied, individual clusters are modeled with
HMMs of appropriate sizes to best fit data, and the
complexity of all HMMs in the partition and the over-
all data likelihood are carefully balanced. These lead
to better quality cluster partitions. Figure 3 com-
pares the partitions in terms of their PPP and BPS
scores. The solid lines represent the BHMMC with
model size selection, and the three dashed lines repre-
sent clustering with fixed 3-state HMM, 6-state HMM,
and 10-state HMM. For all trials, partitions generated
with HMM model size selection have higher posterior
model probability and larger between partition sim-
ilarity than those obtained from clustering with the
fixed size HMMs.

7 Summary

We have presented a Bayesian temporal data cluster-
ing methodology using HMMs. Bayesian model selec-
tion criterion has been successfully applied to solve
both HMM model size selection and cluster partition

selection problems. The incorporation of the HMM
model size selection procedure not only generates more
accurate model structure for individual clusters, but
also improves the quality of the partitions generated.
Because of the computational complexity of clus-
tering algorithms involving HMMs, for future work,
we would like to incorporate incremental clustering
strategies where we start with a cluster partition built
based on small data, and gradually revise the size and
structure of the partition as more data is collected.
Also, we would like to look into partition evaluation
criterion based on model prediction accuracy. Even
though the purpose of our HMM clustering is not pre-
diction per se, how well the set of cluster models can
predict may be used to evaluate the quality of the par-
tition.

References

(1] DERMATAS, E., AND KOKKINAKIS, G. Algorithm
for clustering continuous density hmm by recog-
nition error. IEEE Transactions on Speech and
Audio Processing 4, 3 (May 1996), 231-234.

[2] HECKERMAN, D., GEIGER, D., AND CHICKER-
ING, D. M. A tutorial on learning with bayesian
networks. Machine Learning 20 (1995), 197-243.

[3] L1, C., AND Biswas, G. A bayesian approach
to temporal data clustering with hidden markov
model representation. In Proceedings of the Sev-
enteenth International Conference on Machine
Learning (2000), P. Langley, Ed.

[4] RABINER, L. R. A tutorial on hidden markov
models and selected applications in speech recog-
nition. Proceedings of the IEEE 77, 2 (Feb. 1989),
257-285.

[5] RaBINER, L. R., LEE, C. H., Juang, B. H.,
AND WILPON, J. G. Hmm clustering for con-
nected word recognition. In Proceedings of the
Fourteenth International Conference on Acoustics,
Speech, and Signal Processing (1989), pp. 405-408.

[6] SMYTH, P. Clustering sequences with hidden
markov models. In Advances in Neural Informa-
tion Processing, M. C. Mozer, M. 1. Jordan, and
T. Petsche, Eds. Cambridge:MA, MIT Press, 1997,
pp. 648-654.

199



