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ABSTRACT

Usually, for estimating the parameters of a hidde
Markov model (HMM), the Baum-Welch algorithm
relies on a high dimensional common feature set. T
papers proposes an algorithm based on the Bau
Welch algorithm for estimating parameters of
hidden Markov model(HMM) that relies on a low
dimensional specific set of features for each sta
Each feature set is chosen specifically for that state
be a sufficient statistic for the discrimination of th
given state from a common “white-noise” state. Th
parameter set of each state must include the comm
state as a special case. A simulated data exampl
provided showing that for a given training data se
the performance (State Classi ficat ion Erro
probability) is superior over the conventional hidde
Markov model. The paper has a very soun
theoretical aspect which is very well supported by th
simulated example. In this paper, we will go over a
the theoretical aspects of the algorithm as well as t
simulation example provided[1].

1. INTRODUCTION

We know the conventional hidden Markov mode
can model a process. Let there be N number of sta
from to . If the observed sequences of data
denoted by , for time steps t=1, 2,...,T, then th
following parameters completely describe the hidd
Markov model. (1) the initial state prior probabilities

, (2) the state transition matrix , (3) the
observation densities at each state , where b
i and j vary from 1 to N. A very nice way of
estimating , for a model with N states
is to train it iteratively using the Baum-Welch
algorithm[2][3].
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Usually the is in high dimensions and becaus
of computational and memory constrains, the hig
dimensional raw data is reduced to a low dimension
fea tu re se t . Th is p rocess o f
reduction in dimensions of raw data is the featu
extraction. Now, the new hidden markov Model i
defined by the same (1) prior probabilities , (2) th
state transition matrix but a different low-
dimensional observation densities . Speec
processing commonly employs this technique whe
the observations are set of cepstral coefficients. Sin
the dimensions of are low, different PDF
estimation method such as Gaussian Mixtures a
employed for estimating the state observation
probabilities. It has been observed that the it is ve
difficult to estimate the PDF’s non parametrically
above five dimensions and it is impossible above 2
[6] unless the features are exceptionally well-behav
(are close to independent or multivariate Gaussian)
is common for high-dimensional PDF estimators
give very good results as classifiers in man
applications because of the fact that in high
dimensional space the data is inherently separa
and any PDF estimator may do as good as another
Only 5 to 10 features cannot contain al l th
information that is needed for speech recognition. S
the dimensionality reduction has been a major field
research. Some of the various approaches are fea
selection (either use a smaller and insufficien
features set or use more features and suffer P
estimation errors), projection pursuits and subspa
analysis. All these methods involve assumptions a
approximations that do not hold in general. Featu
selection assumes that most of the information f
discriminating all data classes is contained in a fe
set of features. Projection-based methods assume
the information is linearly separable. The metho
proposed in the paper is completely general based
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the concept of “sufficient statistic” and “class specifi
classifier”[5]. For a given observation sequence
for time steps t=1, 2,...,T, all the parameters for th
hidden Markov model are estimated using th
classical Baum-Welch algorithm except for the sta
likelihood function . Consider a common-stat

for which the raw data is a pure iid Gaussia
noise. Thus, we have a likelihood ratio

(1)

The left hand side of (1) is the likelihood function o
a conventional HMM scaled by a factor .The
right hand side of (1) gives the testing criteria for th
sufficiency of for state vs. state . The
dimensions at each state j are suffic ient t
discriminate it from the common state . Clearl
dimensions of each ‘s are lower than . For th
sufficiency of the features, we require to know th
PDF of , that is what statistic best distinguishes th
State from the common-state . This prio
information is not completely known in the man
real-world applications and hence the sufficiency
features can never be established theoretically. Thi
the same problem while selecting the features and
sufficiency is approximated. In the class-specif
specifier[4}, each sub-set of states represent ea
class and has a different set of statistic for the class
data that it represents. The densities of each
each state can be estimated using fewer number
training samples than the conventional HMM sinc
the densities for less number of features is to
estimated at each state. Hence, we now conclude
the method proposed in the paper is theoretically ve
sound that can be applied to the applications lik
t ime-ser ies (Speech) Ana lys is and Imag
recognition[5].

2. THE ALGORITHM

The modified Baum-Welch algorithm to estimate th
parameters of Class-Specific HMM using the low
dimensional features is provided here[1].
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2.1.  The Class-Specific HMM

2.1.1. The class-specific forward procedure

1. Initialization:

(2)

2. Induction:

(3)

3. Termination:

(4)

where is the condition that state is true a
every t.

2.1.2. The class-specific backward procedure

1. Initialization:

(5)

2. Induction:

(6)

2.1.3. HMM Reestimation formulas

Define  as ,

We have,

(7)
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The updated state priors are . Th
updated state transition matrix is

(9)

2.1.4. Gaussian mixture reestimation formulas

We assume the fol lowing Gaussian mixtur
representation for each :

(10)

where

and is the dimension of . We may let M ne
independent of as long as M is sufficiently large
Let

(11)
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(14)
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2.2. Relationship to conventional algorithm

All the estimated parameters are same as tho
est imated by the convent ional Baum-Welc
algor i thm except for the Gaussian mixture
parameters .

3. EXPERIMENT

3.1. The Simulation

A synthetic six state hidden markov
model was created. The following state transitio
matrix and an equiprobable initial state priors we
used.

For each segment , a state was randomly choo
according to the known initial state distribution an
then an sample t ime ser ies

for this segment
was formed according to the state distributio
(statistical model). Features were then calculat
from each of these segments to be used as the d

for to train the HMM. The common-state
was chosen to be a iid Gaussian noise of mean z
and unit variance.The six signals which are modelle
by the six states of the HMM were chosen accordin
to the following criterion (1) the signals are easy t
produce and describe, (2) a sufficient statist

was known exactly for each mode
that can discriminate it from the common-state
though this won’t hold generally in the real-world
(3) these sufficient-statistic had a known densi
under state , (4) all the signals and statistics we
diverse and statistically dependent. the description
each of these six signal types, sufficient statistics a
its distribution under the common state is given b
the Table 1 in the paper under review[1].

The simulation was implemented using class-speci
algorithm, and the two different approaches o
conventional Baum-Welch algorithm. The two
classical approaches were different in the way th

bj zj( )

S1 S2 … S6, , ,{ }

A

0.7 0.3 0 0 0 0

0 0.7 0.3 0 0 0

0 0 0.7 0.3 0 0

0 0 0 0.7 0.3 0

0 0 0 0 0.7 0.3

0.1 0 0 0 0 0.9

=

t

N 256=
x t[ ] x1 t[ ] x2 t[ ] … xN t[ ],,,{ }= t
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Gaussian Mixtures were implemented. One used
full or the general covariance matrices (“CL
approach) while the other used the diagon
covariance matrix that assumes all the features a
statistically independent (“IA” approach). The IA
approach is usually employed in speech recogniti
so as to estimate a fewer number of parameters. T
paper refers these approaches as CS, CL and IA. T
CS approach used 1 or 2 features per state but for
and IA approach, all the features were combined
form a 7-dimensional feature set.

The parameters of the model were estimated us
Baum-Welch algorithm for each with CS, CL and IA
approach on 1, 2, 5, 10, 20, 40, 80, 160 and 3
records. Each of these record consisted of 99 d
segments. Each segment from which features we
calculated, consisted of N = 256 time samples. T
evaluate the performance as a function of number
records the Viterbi algorithm was used for decoding
separate pool of data with 640 records. The sta
classification error probability was used as a measu
of performance by dividing the total number of error
by the total number of segments (total number
time-steps or observations of HMM).

3.2. The results

During the parameter estimation using Baum-Welc
for CL and IA approaches, caused the catastroph
errors during decoding because the initialization (
and A) was not seeded properly. To overcome th
problem, a separate pool of labelled data was used
train teach of the six states. This better estimate
PDF ( and A) was used as the starting point to tra
the model both for the CL and IA approaches. Th
reduced the errors to a “lower bound”.

While the CL and IA encountered catastrophic erro
while decoding, the CS approach proposed by t
paper did not encounter such problem. This seems
be one of the advantages of this algorithm. Also, th
Figure 1 of the paper [1] shows that the sta
classification error probability for CS approach i
lower than both the CS and IA with less number o
records (from 1 to more than 100) used fo
parameters estimation. As the number of records
training increase, both the CS and CI approa
converge. The IA approach has the higher error ra
because of the fact that it assumes independen
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among the features which is not true.

4. SUMMARY AND CONCLUSION

The theoretical approach of the class-specif
imp lementa t ion o f the Baum-Welch was
demonstrated very well in the paper. The claim th
this new class-specific algorithm that employs low
dimensional feature set has a higher performan
than the CL or IA approaches given a training dat
set. this has been extremely well supported by t
simulation example provided in the paper where fo
class-specific approach the feature dimensions w
either one or two whereas for the CL and IA
approached the feature dimensions were combined
seven. The reason for improvement in performance
correctly given in the paper as the low-dimensio
feature set that, the parameters for which can
estimated using less training data. The reduction
dimensions of the features comes from the pri
knowledge about the sufficient feature set for a give
state.
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