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ABSTRACT

In this paper, a new algorithm based on the Baum-Welch
algorithm for estimating the parameters of a hidden Markov
model (HMM) is presented. It allows each state to be ob-
served using a different set of features rather than relying
on a common feature set. Each feature set is chosen to
be a sufficient statistic for discrimination of the given state
from a common “white-noise” state. Comparison of likeli-
hood values is possible through the use of likelihood ratios.
The new algorithm is the same in theory as the algorithm
based on a common feature set, but without the necessity of
estimating high-dimensional probability density functions
(PDF’s). A simulated data example is provided showing
superior performance over the conventional HMM.

1. INTRODUCTION

Consider a hidden Markov model (HMM) for a process with
N states numbered S; through Sy. Let the raw data be
denoted X[t], for time steps ¢ = 1,2,...,T. The parame-
ters of the HMM, denoted A, comprise the state transition
matrix A = {ai;}, the state prior probabilities u;, and the
state observation densities bj(X), where ¢ and j range from
1 to N. These parameters can be estimated from training
data using the Baum-Welch algorithm [1], [2]. But, be-
cause X[t] is often of high dimension, it may be necessary
to reduce the raw data to a set of features z[t] = T(X[t]).
We then define a new HMM with the same A and u;, but
with observations z[t], ¢ = 1,2,...,T and the state densi-
ties b; (z) (we allow the argument of the density functions to
imply the identity of the function, thus b;(X) and b;(z) are
distinct). This is the approach used in speech processing
today where z[t] are usually a set of cepstral coefficients.
If z[t] is of low dimension, it is practical to apply proba-
bility density function (PDF) estimation methods such as
Gaussian Mixtures to estimate the state observation densi-
ties. Such PDF estimatimation methods tend to give poor
results above dimensions above about 5 to 10 {3] unless the
features are exceptionally well-behaved (are close to inde-
pendent or multivariate Gaussian). In human speech, it is
doubtful that 5 to 10 features can capture all the relevant
information in the data. Traditionally, the choices have
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been (1) use a smaller and insufficient features set, (2) use
more features and suffer PDF estimation errors, or (3) apply
methods of dimensionality reduction [4]. Such methods in-
clude linear subspace analysis [5], projection pursuit [6], or
simply assuming the features are independent (a factorable
PDF). All these methods involve assumptions that do not
hold in general. We now present a new method based on
sufficient statistics that is completely general and is based
on the class-specific classifier [7]. Central to the classical
Baum-Welch algorithm [1] is the ability to calculate ;(j),
the probability that state j is true at time ¢ given the entire
observation sequence X[1],...,X[T]. These probabilities
depend on the forward and backward probabilities, which in
turn depend on the state likelihood functions b;(X). It is
possible to re-formulate the problem to compute () using
low-dimensional PDF’s. Consider an additional “common”
state Sp for which the raw data is pure independent Gaus-
sian noise. Using the likelihood ratios

b; (X)
b;(X)’ =J

<N

< (1)
in place of the likelihood functions b;{(X) in the Baum-
Welch algorithm, causes only a scaling change since the
denominator is independent of j. Each of the ratios in (1)
may be thought of as an optimal binary test or detector
that can be re-written in terms of a state-dependent suffi-
cient statistic, denoted z;, j =1,2,..., N. Thus, we have

bj(X) _ bi(z)
bo(X)  bo(z;)

,1<j <N, (2)
which follows from the sufficiency of z; for state S; vs. state
So. Note that we use the same symbol b; () to represent the
density of X and z;, however they are distinct (the argu-
ment of the function should make it clear which function is
implied). Since these tests do not involve the other states,
they are simpler, and z; can be individually lower in dimen-
sion than z. Note that this requires prior knowledge about
each state, i.e., that a given state is best distinguished from
So by a given statistic'. This prior knowledge is often avail-
able, but not used. It only requires some knowledge about
the signal characteristics in each state, the same knowledge
necessary for choosing features. Keep in mind that each

Tt is not neccessary to know which state is true at any given
time



state does not need a distinct set of statistics. The class-
specific HMM is an extension of the conventional HMM. If
each state has the same set of statistics, the class-specific
HMM specializes to the conventional HMM. When design-
ing a class-specific HMM, one could allocate a subset of
states to each class of data. Each subset of states would
require only the statistics apropriate for that class of data.
In fact, an entirely different processing for feature extrac-
tion, tailored to that type of signal can be used. This can
solve the problem that occurs in speech processing when
short-duration plosives are forced to be analyzed using long
analysis windows which are more appropriate for vowels.
When compared to the standard feature-based HMM using
a common feature set z, the density of the numerators may
be estimated using fewer training samples. Or, for a fixed
number of training samples, more accuracy and robustness
can be obtained. In addition, experience has shown that,
difficulties encountered in initialization of the Baum-Welch
algorithm are greatly diminished when this prior knowledge
is used.

A few words about the denominator densities bo(z;) is
necessary. These densities may be approximated from syn-
thetic white noise or derived analytically. For data that
significantly departs from Sp, all denominators can tend to
zero. In this case, the denominator densities bg(z;) must
be solved for analytically or with an approximation valid in
the far tails. The task of finding solutions valid in the tails
is helped by the fact that So is characterized by pure iid
Gaussian noise. In the computer simulations, we use exact
formulas or approximations valid in the tails.

2. MATHEMATICAL RESULTS

Details of the derivation are to be published [8]. Here, we
provide only the algorithm.
2.1. The Class-Specific HMM

2.1.1. The class-specific forward procedure

1. Initialization:

b; (z][l] .
a1(j) = u; 1<j<N 3
1( ) ) b (Z][ll) J ( )
2. Induction (for 1 <t<T -1, 1<j<N):
N
arn1(j) = [Zat(i) aij] %’02—:% (4)

3. Termination:

p(X[1], ..
p(X[1],..

-, X[T]|A)
- X[T|Ho)

ZQT(l (5)

where Hp is the condition that state Sp is true at
every ¢.
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2.1.2. The class-specific backward procedure

1. Initialization:
Br(i) =1 (6)
2. Induction (fort =T -1,...1, 1<i< N):

N

2o B A O
2.1.3. HMM Reestimation formulas

Define :(j) as p(6: = j|X[1},...,X[T]). We have

N
(i) = () Be()) [ <Z a4(7) ﬂt(i)> - (8

i=1
Let

bj (2]t +1])
bo(z;[t +1])

Be+1(9)

(1) aij

gt(’a])z N

3 b (2m [t +1]) ’
; mX::la:(i) Aim m Bi+1(m)

9

The updated state priors are @#; = 1(¢). The updated state
transition matrix is

T-1 T-1
iy = (Z&(m)) /> 7). (10)

2.1.4. Gaussian mizture reestimation formulas

We assume the following Gaussian mixture representation
for each b;(z;):

M
bi(z) =Y ek Nz s, Uss), 1<G<N. (11)
k=1
where
N(zj,1,0) £ (2m) " P32 U 72l - d ey v e}

and P; is the dimension of z;. We may let M be indepen-
dent of j as long as M is sufficiently large. Let

Cjm N(zj[tLI"’jm)Ujm):l
b;(z;(t]) ’

Yt (3, m) = 7:(5) [ (12)

- (2:; o m)) / (ii%(ﬁ l),> (13)

t=11=1

T T
Bim = (Z’Yt(j, m) zj[t]) / (Z’Yt(j, m)) , o (14)

T
D wlm) 5l = #ym) (5l = 1)
Ujp = = = . (15)

Z7t(j7 m)




2.2. Discussion
2.2.1. Relationship to conventional algorithm

The class-specific forward procedure terminates having com-
puted the likelihood ratio (5), whereas the conventional al-

gorithm computes only the numerator. The class-specific

Baum-Welch algorithm maximizes (5) over A, which is equiv-
alent to maximizing the numerator only. It is comforting

to know that v:(j), &:(2, 7), @i, and a;; will be identical to

those estimated by the conventional approach if (2) is true.

There is no correspondence, however, between the Gaus-

sian mixture parameters of the two methods except that

the densities they approximate obey (2).

3. COMPUTER SIMULATION

3.1. Simulation details

To test the Class-Specific HMM, we created a synthetic
Markov model with known sufficient statistics for each state.
Comparisons with the conventional approach was made by
combining all the class-specific features into one common
feature set. In this way, neither method has an unfair ad-
vantage with respect to features. The following state tran-
sition matrix and state priors were used:

07 03 O 0 0 0

0 07 03 O 0 0
A= 0 0 07 03 0 0

0 0 0 07 03 0 ’

0 0 0 0 07 03

01 0 0 0 0 09

and u; = 1/6, for all j. For each ¢, a state is chosen ran-
domly according to the Markov model. Then, a N-sample
segment of a time series is created from the statistical model
corresponding to the chosen state (N = 256). In our nota-
tion, we have X[t] = {z1[t], z2[t],...,zn][t]}. Features are
then computed from each segment and used as an obser-
vation vector of an HMM. The common state, Sp, is iid
Gaussian noise of zero mean and unit variance, denoted
N(0,1). For each model, a sufficient statistic is chosen for
distinguishing the signal from Hy. These are denoted z,
through z¢. Table 1 lists each signal description, the suf-
ficient statistic, and the distribution under state Sp. The
criteria for selecting these synthetic signals were (a) the
signals are easy to describe and produce, (b) a sufficient
or approximately sufficient statistic was known for distin-
guishing each state from So, (c) these statistics had a known
density under state So, (d) the signals and statistics were
diverse and statistically dependent.

To illustrate the strength of the Class-Specific algo-
rithm, it was compared with two classical implementations.
The classical implementations used a 7-dimensional feature
vector consisting of all features used by the Class-Specific
(CS) approach. Two variations of the classical approach
were created by assuming the Gaussian Mixtures had (1)
a general covariance matrix (“classical” or CL approach )
or (2) a diagonal structure which assumes all the features
are statistically independent (“independence assumption”
or IA approach). We will refer to these three methods by
the abbreviations CS, CL, and IA.

State 1
Description: An Impulse of duration 2 samples oc-
curring on samples 1 and 2 of the time-series with ad-
ditive Gaussian noise of variance 1. Model: z;, =
2(8ft — 1] + 8[t — 2]) + n¢, where n; is distributed
N(0,1). Sufficient statistic: z; = z +z2. log-PDF:
log bo(z1) = —0.5log(4m) — 0.25z2.

State 2
Description: Same as state 1, but on samples 2 and
3. Model: z; = 2(d[t — 2] + é[t — 3]) + n¢, where n; is
distributed (0, 1). Sufficient statistic: z2 = z2+ 3.
log-PDF': log bo(z2) = —0.5log(4w) — 0.25z2.

State 3
Description: Signal type 3 1s #td Gaussian noise of
zero mean and variance 1.7. Model: z: = n;, where
n; is distributed N'(0,1.7). Sufficient statistic: z3 =
log {Zf]:l zf} log-PDF: log bo(z3) = —log '(N/2) —
(IN/2)log(2) + (N/2) z3 — exp(z3)/2.

State 4 and 5

Description: Signal types 4 and b are closely-spaced
sinewawes in Gaussian noise. Model: z; = n; +
asin(wit + @), k = 4,5, where a = 0.4, wa = 0.100, and
ws = 0.101 radians per sample. Sufficient statistic:

zy = log{lzyzlxte_j“”“ 2} k = 4,5. log-PDF:

log bo(zx) = —log N — fip]{vil +2r k=45
State 6

Description: Signal type 6 Is autoregressive noise of
variance 1. Model: z; = [—a1Z¢—1 — a2Zi-2 + 1] @,
where n; is distributed N(0,1), a1 = —0.75, a2 = 0.78,
and o = 0.5675 (« is chosen such that the variance of z;
is 1). Approximate sufficient statistic: The first and
second lags of the normalized autocorrelation estimates
computed circularly. zg = {71,72} where 7x = 7t /7o,
and 7y = %Zﬁ__l TiT(i—k) mod N- log-PDF: Details
provided in [8].

Table 1: Description of each signal type, sufficient statistics
(SS), and distribution of the SS under state Sp.

The multiple record implementation of the HMM de-
scribed in Section V.(B.) of Rabiner [1] (page 273) was used.
All training and testing data was organized into records with
a constant length of 99 data segments per record (75 = 99).
Each segment consisted of N = 256 time samples. Features
were computed on each segment (a segment is associated
with a time-step or observation of the HMM). In the exper-
iment, algorithm performance was determined as a function
of R, the number of training records. In the experiments,
we used R=1,2,5,10,20,40,80, 160, and 320 records. To mea-
sure algorithm performance of all implementations, the ap-
propriate version of the Baum-Welch algorithm was first
run to convergence on the available training data. Next,
the Viterbi algorithm ? was used to determine the most
likely state sequence on a separate pool of 640 records of
testing data. The number of state errors divided by the

2The algorithm in Rabiner [i], pp 263-264, appropriately
modified for the CS method by substituting likelihood ratios
b;(z;[t])/bo(z;[t]) in place of b; (X[t]).
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number of opportunities (640 times 99) was used as a per-
formance metric. For more accurate determination of algo-
rithm performance, sixteen independent trials were made
at each value of R.

3.1.1. Catastrophic errors and “assisted” training

The CL and IA approaches encountered severe problems
with initialization. More often than not, a poor initial-
ization resulted in the Baum-Welch algorithm finding the
incorrect stationary point. This resulted in catastrophic er-
rors. This appeared to be caused by an inability to distin-
guish two or more states. The number of catastrophic errors
decreased as the number of training records increased. The
CS method did not encounter any catastrophic errors. To
study only the PDF estimation issue apart from any initial-
ization issues, it was decided to “assist” the CL and IA ap-
proaches by providing a good initialization point. This ini-
tialization point was found by training separately on labeled
data from each of the N states, then using these PDF’s as
the state PDF’s with the known u and A. In short, the
algorithm was initialized with the true parameter values.
This “good” parameter set was used as the starting point
for all trials of the CL and IA approaches. Doing this pro-
vides somewhat of a “lower bound” on error performance.
The CS results are unassisted.

3.2. Main results

A plot of median error probability for the CL, CS, and IA
methods is provided in Figure 1. The IA approach has a
higher limiting error rate, due to the built-in assumption of
independence, which is not valid. It has, however, nearly
identical convergence behavior as the CS method. This
is expected since the dimension of the PDF estimates is
similar for the two approaches.

4. CONCLUSIONS

A class-specific implementation of the Baum-Welch algo-
rithm has been developed and verified to work in princi-
ple. A computer simulation used a 6-state HMM with six
synthetic signal models. The class-specific feature dimen-
sions were either 1 or 2. When the performance was mea-
sured in terms of state errors in the most likely state se-
quence, the class-specific method greatly outperformed the
classic HMM approach which operated on a combined 7-
dimensional feature set. The improved performance was
due to the lower dimension of the feature spaces made pos-
sible by knowledge of the appropriate feature set for each
state. It also outperformed a method that assumed the
features were statistically independent. In this case, the
improved performance comes from the fact that the class-
specific approach does not compromise theoretical perfor-
mance when reducing dimension.
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