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ABSTRACT

Linear discriminant analysis (LDA) is known to be inappro-
priate for the case of classes with unequal sample covari-
ances. In recent years, there has been an interest in general-
izing LDA to heteroscedastic discriminant analysis (HDA)
by removing the equal within-class covariance constraint.
This paper presents a new approach to HDA by defining an
objective function which maximizes the class discrimina-
tion in the projected subspace while ignoring the rejected
dimensions. Moreover, we will investigate the link between
discrimination and the likelihood of the projected samples
and show that HDA can be viewed as a constrained ML
projection for a full covariance gaussian model, the con-
straint being given by the maximization of the projected
between-class scatter volume. It will be shown that, un-
der diagonal covariance gaussian modeling constraints, ap-
plying a diagonalizing linear transformation (MLLT) to the
HDA space results in increased classification accuracy even
though HDA alone actually degrades the recognition per-
formance. Experiments performed on the Switchboard and
Voicemail databases show a 10%-13% relative improvement
in the word error rate over standard cepstral processing.

1. INTRODUCTION

State-of-the-art speech recognition systems use cepstral fea-
tures augmented with dynamic information from the adja-
cent speech frames. The standard MFCC+A + A A scheme,
while performing relatively well in practice, has no real ba-
sis of existence from a discriminant analysis point of view.
The same argument applies for the computation of the cep-
stral coefficients from the spectral features: it is not clear
that the discrete cosine transform, among all linear transfor-
mations, has the best discriminatory properties even if its
use is motivated by orthogonality considerations.

Linear discriminant analysis [3, 4] is a standard tech-
nique in statistical pattern classification for dimensionality
reduction with a minimal loss in discrimination. Its appli-
cation to speech recognition has shown consistent gains for
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small vocabulary tasks and mixed results for large vocabu-
lary applications [7, 11, 8]. One reason could be because
of the diagonal modeling assumption that is imposed on
the acoustic models in most systems: if the dimensions of
the projected subspace are highly correlated then a diagonal
covariance modeling constraint will result in distributions
with large overlap and low sample likelihood. In this case,
a maximum likelihood feature space transformation [6, 5]
which aims at minimizing the loss in likelihood between
full and diagonal covariance models is known to be very ef-
fective. Secondly, it is not clear what the best definition for
the classes should be: phone, subphone, allophone or even
prototype-level classes can be considered [7]. Related to
this argument, the class assignment procedure has an impact
on the performance of LDA; EM-based approaches which
aim at jointly optimizing the feature space transformation
and the model parameters have been proposed [11, 8, 5].

Chronologically, the extension of LDA to HDA under
the maximum likelihood framework appears to have been
proposed first by Schukat-Talamazzini [11] (called maxi-
mum likelihood rotation). Kumar [8] studied the case for
diagonal covariance modeling and general (not necessarily
orthogonal) transformation matrices and made the connec-
tion with LDA. Following an argument of Campbell [1], he
showed that HDA is a maximum likelihood solution for nor-
mal populations with common covariances in the rejected
subspace. In [6], a maximum likelihood linear transform
(MLLT) was introduced which turns out to be a particular
case of Kumar’s HDA when the dimensions of the original
and the projected space are the same. Interestingly, Gales’
global transform for semi-tied covariance matrices [5] is
identical to MLLT but applied in the model space (all other
cases are feature space transforms). Finally, Demuynck [2]
uses a minimum divergence criterion between posterior class
distributions in the original and transformed space to esti-
mate an HDA matrix. We will make further references to
these approaches and their relation to our work throughout
the paper.

The paper is organized as follows: in section 2 we will
briefly recall the basics of LDA and introduce the HDA ex-
tension. Section 3 will describe the experimental results and
section 4 will provide a final discussion.



2. FROM LDA TO HDA

2.1. Linear discriminant analysis

Consider a set of N independent vectors {z;}1<i<n, ;s €
R", each of the vectors belonging to one and only one class
j € {1,...,J} through the surjective mapping of indices
l:{1,...,N} - {1,...,J}. Leteach class j be char-
acterized by its own mean p;, covariance X ;, and sample
count V;, where the standard definitions hold:
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and ijl N; = N. The class information is condensed
into 2 scatter matrices called:
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The goal of LDA is to find a linear transformation f :
R" —» RP, y = f(z) = 6z, with § a p X n matrix of
rank p < n, such that the following ratio of determinants is
maximized:
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Even though the objective function in (1) is non-linear,
there is a closed form solution given by the transposed eigen-
vectors corresponding to the p largest eigenvalues of the
generalized eigenvalue problem: Bz = AWz (a proof and
an extensive discussion of LDA can be found in [4]).

J(6) )

2.2. Heteroscedastic extension

Let us consider the individual weighted contributions of the
classes to the objective function:

(525"

=1
or, by taking log and rearranging terms, we get:
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H has two very useful properties of invariance. For ev-
ery nonsingular matrix ¢y € RP*?, H(y8) = H(6). This
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means that subsequent feature space transformations of the
range of 8 will not affect the value of the objective function.
Moreover, like LDA, the HDA solution is invariant to linear
transformations of the data in the original space.® A second
remark is that no special provisions have to be made for 6
during the optimization of H except for |#8T| # 0; the ob-
jective function is invariant to row or column scalings of §
or eigenvalue scalings of 667 . Using matrix differentiation
results from [10], the derivative of H is given by:

J
> —2N;(0%,67) 0%, + 2N (6B9T) 9B

=1

dH ()
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Unfortunately, H'(6) = 0 has no analytical solution for

the stationary points. Instead, we used a quasi-Newton con-

jugate gradient descent routine from the NAG? Fortran li-

brary for the optimization of H. Figure 1 illustrates a case
where LDA and HDA provide very different answers.

HDA projection

LDA projection

Clas§ 2

Class 1

I:] Classification error

Figure 1: Difference between LDA and HDA.

For J = 2 classes with N; = N, there is an interesting
connection between H and the Bhattacharyya distance [4]
in the range of 8, p(6), namely 2p(6) > H(0)/N, where:

oW oT|

p(8) = % trace {(0W0T)—1030T}+% log

V62167162267 |
(5)

Since e~?® is an upper bound on the Bayes classifica-

. H(8)
tion error rate, e~ 27 becomes a (looser) upper bound too.
Therefore, maximizing H amounts to minimizing this bound
and, hopefully, the error rate. .

1The invariance is in the following sense: if = KA 2, ¢ € R**7
nonsingular and § = argmaxg H (0) then 8¢ = argmaxy H:(6).
2Numerical Algebra Group



2.3. Likelihood interpretation

Consider {y; € R? | y; = 0z;, 1 < i < N}, the pro-
jected samples onto the HDA space. Assuming a single
full covariance gaussian model for each class, the log likeli-
hood of these samples according to the induced ML model
fij = Opjand S5 = 0%,;67,1 < j < J,is:

N; - Np
— =" log |2|——- log(2m) =

J

N;

2

1

j=1
- ()

It may be seen that the summation in H is related to
the log likelihood of the projected samples. Thus, € can be
interpreted as a constrained ML projection, the constraint
being given by the maximization of the projected between-
class scatter volume.

Next, let us consider the case when diagonal variance
modeling constraints are present in the final feature space.
The maximum likelihood linear transform [6, 5] aims at
minimizing the loss in likelihood between full and diago-
nal covariance gaussian models. The objective is to find a
transformation 1 that maximizes the log likelihood differ-
ence of the data, i.e.,

J
. N; . R
% = argmax y_ — =2 (log| diag(y£;97)| - log 4597
$ERPXP 15
J
= argmax z - % log | diag(¢02j0T¢T)| + Nlog ||
YERPXP j=1

. N
Recall that, based on our earlier argument, HDA is in-
variant to subsequent feature space transformations, hence
the objective function (3) is the same for the composite trans-
form 18 as for 6. We will refer to this composite transform
as the maximum likelihood discriminant (or MLD) projec-
tion. An important observation is that ¢ in (7) does not
necessarily have to be square. By means of (3) and (7),
one could combine an HDA and an MLLT-type projection
through the following function (to be maximized):

J
G(0) = Y _ —Njlog|diag(63;67)| + N log |§B67| (8)

i=1

We will refer to this scheme as the diagonal HDA (or
DHDA) projection. Related to this, Kumar [8] defined the
following feature space transformation: g : R® — R”,

- - T
y = g(z) = 6z, where § = [0(7;)05_]))] is partitioned
into two matrices corresponding respectively, to the pro-

jected and the rejected subspace. The objective is to maxi-
mize K (6), the likelihood of the transformed samples sub-

log |02;67|+C

)
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ject to diagonal modeling constraints and common covari-
ance in the rejected subspace:

J
K(9) = Z —N;log | diag(8%;67)| — N log | diag(6'T8'T)|

Jj=1 _
+2Nlog 0|
&)
where T' = W + B, represents the total scatter of the data.
Even though (8) bears a strong resemblance to (9), they
provide different answers in practice because maximizing
the DHDA objective function is directly related to maxi-
mizing the between class separation in the projected space,
|0 B4T |, whereas for Kumar’s HDA the assumption is that
this is done implicitly by minimizing | diag(¢'T¢'T)|. In-
deed, the two quantities are related through the following
chain of inequalities®:

0i2
| diag(9'TO'T)| > |9'TO'T| > |9/ BET| > 161°|B|

gger| 1

It follows that G(6) > K () + N|B| for all § = [§T¢'T]T.

3. EXPERIMENTS AND RESULTS

The first set of experiments was conducted on a voicemail
transcription task [9]. The baseline system has 2313 con-
text dependent states and 134K diagonal gaussian mixture
components. The test set consists of 86 messages (approxi-
mately 7000 words). The baseline system uses 39-dimensional
frames (13 cepstral coefficients plus deltas and double deltas
computed from 9 consecutive frames). For the LDA and
HDA versions, every 9 consecutive 24-dimensional cepstral
vectors were spliced together forming 216-dimensional fea-
ture vectors which were then clustered to make possibly
multiple full covariance models for each state (totaling around
3K gaussians). Subsequently, a 39216 transformation, 6,
was computed using the objective functions for LDA (1),
HDA (3), and DHDA (8), which projected the models and
feature space down to 39 dimensions. As mentioned in {7],
it is not clear what the most appropriate class definition for
LDA and HDA should be. The best results were obtained
by considering each individual gaussian as a separate class,
with the priors of the gaussians summing up to one for ev-
ery state. After the computation of the LDA or HDA pro-
jection, the vectors were reclustered in the projected space
to form a new set of 39-dimensional full covariance mod-
els (13.5K). An MLLT transformation, v, was then com-
puted to maximize the objective function (7), leading to a

3Here we have used Hadamard’s inequality | diag(A)] > |A| valid
for any symmetric positive definite (SPD) matrix A. The second and
third inequalities follow from observing that |A + B| > |A| for SPD
matrices A and B and by representing [—9B_9T| = |6BoT||¢'BO'T —
0'BOT (BOT)~10B6'T | (according to [10]).



Diagonal covariance (134K prototypes)
System Impr. obj. fn. | WER
Baseline (MFCC) - 39.61%
MFCC+MLLT 5.35% 37.33%
LDA - 39.60%
LDA+MLLT 2.01% 36.63%
HDA 1.14% 40.22%
HDA+MLLT (MLD) 3.94% 35.62%
DHDA 7.34% 37.11%

Full covariance (16.5K prototypes)
System WER
Baseline (MFCC) 37.72%
LDA 39.68%
HDA 36.22%

Table 1: Word error rates and objective function improve-
ments for voicemail.

System Dim. | Impr. obj. fn. | WER

Baseline (MFCC) 39 - 45.80%
LDA 60 - 43.16%
LDA+MLLT 60 2.10% 40.46%
HDA 60 6.23% 54.89%
HDA+MLLT (MLD) | 60 15.26% 39.67%
DHDA 60 8.67% 40.66%

Table 2: Word error rates and objective function improve-
ments for Switchboard.

composite LDA+MLLT and HDA+MLLT (MLD) feature
space. The HDA and the DHDA optimizations were initial-
ized with the LDA matrix. The parameters of the baseline
system (with 134K gaussians) were then re-estimated in the
tranformed spaces. Table | summarizes the improvements
in the objective functions and the word error rates for the
different systems. In order to assess the effectiveness of the
HDA transform alone, we have also trained full covariance
systems in the different spaces whose results are indicated
in the bottom half of Table 1.

The second set of experiments was performed on the
Switchboard database. The baseline system has 2801 con-
text dependent states, 175K diagonal covariance prototypes
and was trained on 70 hours of data (the *95 training set).
Among the notable differences with the voicemail system is
the dimensionality of the feature vectors in the transformed
space (60 versus 39) and the use of right context across word
boundaries during the search. The test set contains 10 ran-
domly selected conversation sides from the CLSP WS’97
dev test set which has 25 conversations in all. Table 2 pro-
vides a comparison between the different techniques.
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4. DISCUSSION

Based on the previous results, the following conclusions
may be drawn: (i) Considering the individual covariances of
the classes in the objective function leads to better discrim-
ination. (i1) However, the clusters are skewed in the HDA
space and it is necessary to “rectify” them by computing
a subsequent diagonalizing transformation. (iii) Applying
a maximum likelihood transform after the HDA projection
is more efficient than incorporating the diagonal modeling
assumption in the DHDA objective function.
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