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ABSTRACT

Independent component analysis (ICA) is
technique that projects the data in the directio
of maximum independence. ICA has bee
around since the seventies, however, it is n
until recently that people have started using it
feature extraction. The main reason people ha
stayed away from ICA thus far is because it do
not work if the independent components we se
are Gaussian in nature (although we may be a
to get bye with just one Gaussian independe
component). Unlike most traditional featur
extraction techniques, which work on th
assumption that the features being extract
come from a Gaussian distribution, ICA aims a
maximizing the nongaussianity of the feature
This review will focus on two things, the theory
behind the ICA pursuit and a critique of th
published experimental results.

1. INTRODUCTION

“The fundamental restriction in ICA is that the
independent components must be nongauss
for ICA to be possible.” (Hyvarinen, Erkki 1999)
This restriction may come as a surprise to som
people, but the fact remains that the initia
mixing matrix cannot be estimated for Gaussia
independent components. The interesting asp
of ICA is tha t i t can be shown that by
maximizing the nongaussianity of the data w
can obtain the features that contribute the mo
information. The paper in review, “Independen
component analysis applied to feature extracti
for robust automatic speech recognition,” wa
t

e

k
e
t

d

.

n

e

ct

t

written by L. Potamitis, N. Fakotakis and G
Kokkinakis. In the paper the authors show a
improvement in the word accuracy using ICA t
select spectral and cepstral coefficients f
training. The paper does not provide an apples
apples comparison of ICA with other mor
traditional techniques like PCA and LDA
However, it does provide an insight into th
application of ICA to area of speech recognitio

This paper has been organized as follow
section 2 will be a review of PCA and its
advantages. Similarly, section 3 will be a revie
of LDA. Section 4 will describe the theory
behind the ICA pursuit. Section 5 will describ
the principles if ICA estimation and then finally
section 6 will be a critique of the published
experimental results.

2. KARHUNEN LOEVE TRANSFORM

The Karhunen Loeve transform (PCA) is
classic dimensionality reduction techniqu
which works by linearly combining features
PCA is a linear transformation that seeks
projection that best represents the data in a lea
square sense. The linear transform can
obtained by consider ing the problem o
representing a set ofn d-dimensional samples
x1,...,xn by a single vectorx0. An interesting
one-dimensional representation can be obtain
by projecting the data onto a line runnin
through the sample mean which is given by

wherem is the sample mean,e is a unit vector in
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the direction of the line and the coefficienta is a
scalar which correspond to the distance of a
point x from the meanm. Using the above
representation we can find an optimal set o
coefficients by minimizing the squared error.

This brings us to the more interesting problem
finding the best direction fore. The solution to
this involves a scatter matrixS which is nothing
more than(n-1) times the sample covariance. I
can be shown that the vectore that maximizes
Jo(.) also maximizesetSe. We can use Lagrange
multipliers and differentiate the above equatio
w.r.t e subject to the constraint thate is a unit
vector to obtain

Clearly the above equation suggests that t
solution vectore is the eigen vector of the scatte
matrixS.

3. FISHER’S LINEAR DISCRIMINANT

Linear discrimination analysis considers th
problem of classifyingn d-dimensional samples
by reducing it into a more manageablep-
dimension space (p < n) [6]. In two-dimensions
LDA can be thought of as the projection of th
samples onto a l ine. The goal of l inea
discrimination is to move the line around an
find an orientation for which the projected
samples are well separated.

If we have a set ofn d-dimensional samples
x1...xn and if we use the samples in the set t
form a linear combination of the components o
x, we obtain the scalar dot product A
you can see the direction of the vectorW is
importance in discriminating between th
classes. Hence, our goal is simply the matter
finding the best possible direction forW.

In order to determine the best possible directio
for W we define thescatter matricesSi andSw.
Si is defined as a measure of the variability o
scatter of the samples within the class

y W
t
x=

J0 x0( ) m ake+( ) xk– 2

k 1=

n
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andSw is a measure of the total within-clas
variability or scatter and is given by

Apart from the within-class scatter we defin
anotherscatter matrixcalled the between-class
scatter. The between-class scatterSb is a measure
of the variability of the various class means w.r
to the global mean and is given by

Using thescatter matriceswe define an objective
functionJ(.) such that maximizing the objective
function leads to the optimal value forW.
Intuit ively it can be seen that in order to
maximizeJ(.) the class means need to be as f
apart as possible and the samples within t
classes need to be tightly clustered. It can
shown that a vectorW that maximizesJ(.) must
satisfy

Where represents the eigen values andW
represents the eigen vectors of the between-cl
to the within-class ratio. In order to reduce th
dimensionality we select the eigen vectors wi
thep largest eigen values (p < n).

4.THE THEORY BEHIND ICA

Assume that we observen linear mixtures of the
form x1,.. . , xn. The mixtures are a linear
combination ofn independent components.

Wheresk represents the independent compone
we are trying to find. Without loss of generality
we can assume that both the mixture variabl
and the independent components have ze
mean. If the variables do not have a zero me

λ

Si x mi–( ) x mi–( )t

x Di∈
∑=

Sw Si
i 1=

c
∑=

Sb ni mi m–( ) mi m–( )t

i 1=

c
∑=

SbW λSw W=

xj aj1s1 aj2s2 … ajnsn+ + +=
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they can always be centered by subtracting t
sample mean from them.

Using vector notation we can letx denote the
mixtures x1,..., xn, and likewise we can lets
denote the independent components. Let
denote the mixing matrixA as the matrix of all
aij  elements. The mixing model is written as

The statistical model above is know as th
independent component analysis. The mixin
matrixA is assumed to be unknown and needs
be estimated using the mixturesx. There are two
main conditions upon which ICA depends. Th
first condition is that the componentssk are
statistically independent. The second condition
that the independent components must hav
nongaussian distribution. Then, after estimating
the matrixA we can compute its inverseW and
obtain the independent components by

The second condition upon which ICA depend
is also the fundamental restriction in ICA. To se
why this is a problem, assume that the mixin
matrix A is orthogonal and the independen
components sk are Gaussian. Then the mixtur
componentsx1,..., xnare Gaussian sincesk are
Gaussian, uncorrected sincesk are independent
and of unit variance.The joint density of th
mixture componentsx1,..., xn is completely
symmetric. Therefore, it does not contain an
information on the direction of the column
vectors in the mixing matrixA. Hence, the
mixing matrixA cannot be estimated.

5. PRINCIPLES OF ICA ESTIMATION

Intuitively speaking, the key to estimating th
ICA model is nongaussianity. The Central Lim
Theorem tells us that a sum of independe
random variables tends towards a Gaussi
distribution, under certain conditions. Thus,
sum of independent random variables usually h
a distribution that is more Gaussian that any

x As=

s Wx=
s

a

t
n

s

the two original random variables. Letx be a
vector of observations where each observation
a linear mixture of independent components. T
estimate one of the independent components,
consider a linear combination of thexi

wherew is a vector to be determined. Ifw were
one of the columns of the inverse ofA, this linear
combination would actually equal one of th
independent components. The main questi
now is how can we use the Central Limi
Theorem to determinew. In practice we cannot
determine such aw exactly because we have n
knowledge of the mixing matrixA. However, we
can find an estimator that gives us a goo
approximation.

5.1 Kurtosis

To use nongaussianity in ICA estimation, w
must have a quan t i ta t ive measure o
nongaussianity of the output random variabl
sayy. To simplify things we can assume thaty is
centered and has a zero mean. A classic
measure of nongaussianity is kurtosis or th
forth-order cumulant. The kurtosis ofy is
denoted by

Also, since we assumed thaty is of unit variance,
the right hand simplifies toE{ y4} - 3. For a
Gaussian random variabley the forth moment
equals 3(E{ y2}) 2. Thus, the kurtosis for a
gaussian random variable is zero and non-ze
for most nongaussian random variables.

In practice, determining the independen
components is simply a matter of maximizin
the contrast function via some variation of th
gradient decent search. Computationally it is ju
a matter of finding the forth moment, however,
drawback of using the kurtosis function is it
sensitivity to outliers in the data.

y w
T

x wi xi
i

∑= =

kurt y( ) E y
4

 
 
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5.2 Negentropy

A second measure of nongaussianity is given
negentropy. Negentropy is based on th
information-theoretic quantity of differentia
entropy. The entropy of a continuous rando
variableH which is also called the differential
entropy is given by

A fundamental result in information theory is
that a Gaussian variable has the largest entro
among all random variables of equal varianc
This means that the entropy could be used a
measure of nongaussianity. To obtain such
measure of nongaussianity we can use a sligh
modified version of the differential entropy
called negentropy. The negentropyJ is defined as

whereygaussis a Gaussian random variable wit
the same covariance asy. In practice, finding a
suitable estimator for negentropy is difficult an
therefore this contrast function remains
theore t ica l one. A c lass ica l method o
approximating negentropy is by using highe
order moments

Note that the validity of such approximation
may be rather limited. In particular, thes
approximations suffer from the non-robustne
encountered with kurtosis. To overcome suc
problems new approximations were developed
[2] based on the maximum-entropy principle.

In the equation abovev is a standardized
Gaussian random variable and the functionG(.)
are a set of non-quadratic functions [2]. Th
clearly is a generalization of the moment-base
approach ify is symmetric. In practice, taking
G(u) to be 1/a1log [cosh [a1u]] or -exp[-u2/2] has

H y( ) f y( ) f y( )log yd∫–=

J y( ) H ygauss( ) H y( )–=

J y( ) 1
12
------E y

3{ }
2 1

48
------kurt y( )2+=

J y( ) E G y( ){ } E G v( ){ }–[ ]2=
y

proven to be useful wherea1 is some suitable
constant in the range [1, 2].

CONCLUSION

As mentioned in the introduction, the main aim
of the paper in review is to give a description o
the work done by the authors in extracting fea
tures using ICA. The paper does not introduc
any new techniques or approximations. Th
paper is simply an application of the work don
by other people in theNeural Information Pro-
cessingcommunity to speech recognition. Per
haps my biggest criticism of the paper are th
comparisons in the experimental results.

In the table above the authors do not provide
apples to apples comparison between a syst
that uses say log filter banks without ICA and
system that uses log filter banks with ICA. Also
a useful point of comparison would have been
the authors had provided word recognition acc
racy results for PCA and LDA for the systems.
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Table 1: Word recognition Accuracy (%)

MFCC 56.57

MFCC + CMN 70.68

ICA from MFCC + CMN 74.21

ICA from log FBANKS 76.22
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