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ABSTRACT written by L. Potamitis, N. Fakotakis and G.
Kokkinakis. In the paper the authors show an

Independent component analysis (ICA) is a improvement in the word accuracy using ICA to
technique that projects the data in the direction se|ect spectral and cepstral coefficients for
of maximum independence. ICA has been training. The paper does not provide an apples to
around since the seventies, however, it is not gpples comparison of ICA with other more
until recently that people have started using it in traditional techniques like PCA and LDA.
feature extraction. The main reason people haveHowever, it does provide an insight into the
stayed away from ICA thus far is because it does gpplication of ICA to area of speech recognition.
not work if the independent components we seek
are Gaussian in nature (although we may be ableThis paper has been organized as follows:
to get bye with just one Gaussian independent section 2 will be a review of PCA and its
component). Unlike most traditional feature advantages. Similarly, section 3 will be a review
extraction techniques, which work on the of LDA. Section 4 will describe the theory
assumption that the features being extractedbehind the ICA pursuit. Section 5 will describe
come from a Gaussian distribution, ICA aims at the principles if ICA estimation and then finally
maximizing the nongaussianity of the features. section 6 will be a critique of the published
This review will focus on two things, the theory experimental results.
behind the ICA pursuit and a critique of the
published experimental results. 2. KARHUNEN LOEVE TRANSFORM

1. INTRODUCTION The Karhunen Loeve transform (PCA) is a
classic dimensionality reduction technique

“The fundamental restriction in ICA is that the which works by linearly combining features.
independent components must be nongaussiarPCA is a linear transformation that seeks a
for ICA to be possible.” (Hyvarinen, Erkki 1999) projection that best represents the data in a least-
This restriction may come as a surprise to some square sense. The linear transform can be
people, but the fact remains that the initial obtained by considering the problem of
mixing matrix cannot be estimated for Gaussian representing a set af d-dimensional samples
independent components. The interesting aspecix1,...,xn by a single vectok0. An interesting
of ICA is that it can be shown that by one-dimensional representation can be obtained
maximizing the nongaussianity of the data we by projecting the data onto a line running
can obtain the features that contribute the most through the sample mean which is given by
information. The paper in review, “Independent
component analysis applied to feature extraction X =m+ae

for robust automatic speech recognition,” was . . . .
wherem is the sample meam,is a unit vector in



the direction of the line and the coefficieais a

scalar which correspond to the distance of any S= y (x—m)(x- mi)t
point x from the meamm. Using the above x [ID.
representation we can find an optimal set of !
coefficients by minimizing the squared error. andS,, is a measure of the total within-class
n 2 variability or scatter and is given by
Jo(Xg) = § [(m+ae)—x c
k=1 Sy = > S;
This brings us to the more interesting problem of i=1

finding the best direction foe. The solution to  Apart from the within-class scatter we define
this involves a scatter matri® which is nothing  anotherscatter matrixcalled the between-class
more than(n-1) times the sample covariance. It scatter. The between-class scaBigrs a measure
can be shown that the vecterthat maximizes of the variability of the various class means w.r.t
Jo(.) also maximizes'Se We can use Lagrange to the global mean and is given by

multipliers and differentiate the above equation c t

W.r.t e subject to the constraint thatis a unit Sp = Y ni(m;—m)(m; —m)

vector to obtain . i=1 . .
Se= \e Using thescatter matricesve define an objective

Clearly the above equation suggests that thé‘unctian(.) such that maximizing the objective
solution vectoe is the eigen vector of the scatter function leads to the optimal value fow.

matrix S. Intuitively it can be seen that in order to
maximizeJ(.) the class means need to be as far
3. FISHER'S LINEAR DISCRIMINANT apart as possible and the samples within the

classes need to be tightly clustered. It can be
Linear discrimination analysis considers the shown that a vectoW that maximizes)(.) must
problem of classifyingh d-dimensional samples satisfy
by reducing it into a more manageabpe S,W = AS, W
dimension spacep(< n) [6]. In two-dimensions
LDA can be thought of as the projection of the

S?‘”‘P'?S qntc_) a line. The goal of linear represents the eigen vectors of the between-class
discrimination is to move the line around and ", \yithin-class ratio. In order to reduce the
find an orientation for which the projected gimensionality we select the eigen vectors with
samples are well separated. thep largest eigen valueg € n).

Where A represents the eigen values avid

If we have a set oh d-dimensional samples 4.THE THEORY BEHIND ICA

X1...Xn and if we use the samples in the set to

form a linear combination of the components of Assume that we observelinear mixtures of the

X, we obtain the scalar dot produgt = W'x  As form x4q,..., X,. The mixtures are a linear

you can see the direction of the vectdf is  combination ofindependent components.

importance in discriminating between the

classes. Hence, our goal is simply the matter of Xj = 8535t 88, ... 8,8,

finding the best possible direction . :
Wheres, represents the independent components

In order to determine the best possible directionWe are trying to find. Without loss of generality

for W we define thescatter matricesS; andS,, we can assume that both the mixture variables

S is defined as a measure of the variability or @1d the independent components have zero
scatter of the samples within the class mean. If the variables do not have a zero mean



they can always be centered by subtracting the the two original random variables. L&tbe a

sample mean from them.

Using vector notation we can lgtdenote the
mixtures x1,..., xn, and likewise we can let
denote the independent components. Let us
denote the mixing matriA as the matrix of all

a; elements. The mixing model is written as

vector of observations where each observation is

a linear mixture of independent components. To
estimate one of the independent components, we
consider a linear combination of tke

y=wx= > WX
|

wherew is a vector to be determined. W were

X = AS

The statistical model above is know as the
independent component analysis. The mixing
matrix A is assumed to be unknown and needs to
be estimated using the mixturgsThere are two
main conditions upon which ICA depends. The
first condition is that the componensg are
statistically independent. The second condition is
that the independent components must have a
nongaussian distributiod hen, after estimating
the matrixA we can compute its invers&' and
obtain the independent components by

s = WX

The second condition upon which ICA depends
is also the fundamental restriction in ICA. To see
why this is a problem, assume that the mixing
matrix A is orthogonal and the independent
components,sare Gaussian. Then the mixture
componentxl,..., xnare Gaussian sSincg are
Gaussian, uncorrected singgare independent
and of unit variance.The joint density of the
mixture componentgl,..., xnis completely
symmetric. Therefore, it does not contain any
information on the direction of the column
vectors in the mixing matriXA. Hence, the
mixing matrixA cannot be estimated.

5. PRINCIPLES OF ICA ESTIMATION

Intuitively speaking, the key to estimating the
ICA model is nongaussianity. The Central Limit
Theorem tells us that a sum of independent
random variables tends towards a Gaussian
distribution, under certain conditions. Thus, a
sum of independent random variables usually has
a distribution that is more Gaussian that any of

one of the columns of the inverse Af this linear
combination would actually equal one of the
independent components. The main question
now is how can we use the Central Limit
Theorem to determine. In practice we cannot
determine such & exactly because we have no
knowledge of the mixing matriA. However, we
can find an estimator that gives us a good
approximation.

5.1 Kurtosis

To use nongaussianity in ICA estimation, we
must have a quantitative measure of
nongaussianity of the output random variable,
sayy. To simplify things we can assume thais
centered and has a zero mean. A classical
measure of nongaussianity is kurtosis or the
forth-order cumulant. The kurtosis ofis
denoted by

0 20f

kurt(y) = EBy“B—B%Dy il
OO0 00 m

Also, since we assumed thais of unit variance,
the right hand simplifies t&{y*} - 3. For a
Gaussian random variablethe forth moment
equals 3E{y?})2. Thus, the kurtosis for a
gaussian random variable is zero and non-zero
for most nongaussian random variables.

In practice, determining the independent
components is simply a matter of maximizing

the contrast function via some variation of the
gradient decent search. Computationally it is just
a matter of finding the forth moment, however, a
drawback of using the kurtosis function is its

sensitivity to outliers in the data.



5.2 Negentropy proven to be useful whera, is some suitable

constant in the range [1, 2].
A second measure of nongaussianity is given by

negentropy. Negentropy is based on the

information-theoretic quantity of differential
entropy. The entropy of a continuous random As mentioned in the introduction, the main aim
variableH which is also called the differential  of the paper in review is to give a description of
entropy is given by the work done by the authors in extracting fea-
tures using ICA. The paper does not introduce
H(y) = —[f(y)logf(y)dy any new techniques or approximations. The
. ) ) paper is simply an application of the work done

A fundament_al resu_lt in information theory is by other people in théleural Information Pro-

that a Gaussian variable has the largest entropy cessingcommunity to speech recognition. Per-

among all random variables of equal variance. haps my biggest criticism of the paper are the
This means that the entropy could be used as a

CONCLUSION

measure of nongaussianity. To obtain such a

comparisons in the experimental results.

measure of nongaussianity we can use a slightly  Table 1: Word recognition Accuracy (%)

modified version of the differential entropy,
called negentropy. The negentrapis defined as

‘J(y) =H (ygausg -H (y)

whereygaussis a Gaussian random variable with
the same covariance gsin practice, finding a
suitable estimator for negentropy is difficult and
therefore this contrast function remains a
theoretical one. A classical method of
approximating negentropy is by using higher-
order moments

_ 1 3,21 2
J(y) = 12E{y} +48kurt(y)

Note that the validity of such approximations

may be rather limited. In particular, these

approximations suffer from the non-robustness
encountered with kurtosis. To overcome such
problems new approximations were developed in
[2] based on the maximum-entropy principle.

3(y) = [E{G(y)} —E{G(WV)}]?

In the equation above is a standardized
Gaussian random variable and the funct®)
are a set of non-quadratic functions [2]. This
clearly is a generalization of the moment-based
approach ify is symmetric. In practice, taking
G(u) to be 144log [cosh pyu]] or -exp[-u2/2] has

MFCC 56.57
MFCC + CMN 70.68
ICA from MFCC + CMN 74.21
ICA from log FBANKS 76.22

In the table above the authors do not provide an
apples to apples comparison between a system
that uses say log filter banks without ICA and a
system that uses log filter banks with ICA. Also,
a useful point of comparison would have been if
the authors had provided word recognition accu-
racy results for PCA and LDA for the systems.
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