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ABSTRACT

Statistical analysis of mixture models are of interest because it is an alternative to nonparametric
density estimation and it is a powerful way of modelling in cluster analysis. In case of density estimation,
optimization of the Bayesian Information criterion (BIC) generally results in a good approximation of the
density to be estimated. But in case of cluster analysis, the BIC tends to overestimate the number of
clusters when the data is a poor fit to the mixture model. In this context a modification of BIC, integrated
completed likelihood (ICL) criterion has been investigated. In the ICL approach, the integrated completed
likelihood is maximized to select both a relevant form of model and relevant number of clusters. In the
BIC approach, only the observed likelihood is maximized. Where as the integrated completed likelihood
includes the estimated (using maximum a posteriori function) missing data. The ICL criterion penalizes for
the complexity of the mixture model, thus ensuring the partitioning of data with the greatest evidence. This
paper will focus on the computation of ICL, effectiveness and drawbacks of ICL in the context of cluster
analysis. The differences between ICL and BIC will also be investigated.

1. Introduction

Mixture model based clustering provides a less restrictive framework for partitioning of data into relevant
number of clusters - an alternative to nonparametric modeling [2]. In this context, selection of the right model
is characterized by the model form and the number of mixture components in the model. Bayesian-based
methodologies for identifying a mixture model for clustering data is widely available in literature ([4],[6],[8]).

In the Bayesian framework, a model is selected among several competing models because it has the
highest posterior probability given the data set. If all models have same prior probabilities, the selected
model with highest posterior probability is equivalent to selecting the model with the largest integrated
likelihood (which is the marginal likelihood of the model). Under regularity conditions, Bayesian information
criterion (BIC) is a reliable approximation to this integrated likelihood [8]. But the regularity conditions do
not hold for estimating the number of clusters ([5], [7]).

The authors [2] claim that the traditional Bayesian Information Criterion (BIC) works well when the
mixing proportions are restricted to be equal, without this restriction BIC over estimates the number of
clusters. There is also a lack of theoretical justification for BIC approximation of the intigrated likelihood
([1],[2]). The algorithm proposed in [2] identifies a mixture model for clustering data by maximizing the
integrated completed likelihood (ICL) with a penalizing function for the complexity of the model. Which is
essentially a modification of the BIC criterion.

In this article, ICL criterion is discussed in section 2. Also the difference between BIC and ICL is
highlighted in this section. Section 3 discusses and compares the results from simulated and real data sets
obtained in [2]. An overall discussion section ends this paper.
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2. ICL Algorithm

A finite mixture model with n independent random variables zj...., Z,, from k-component mixture can
be represented by

f(a:,-|m,K,9):Zpk¢(xi|ak) i=1,...,n k=1,...,K
k=1

Where m denotes the model and 6 = (p1,...pk,a1,...,ax) is the parameter vector. pj’s are the mixing
proportions (0 < py < 1, for all k=1,...,.K and }_, pr = 1) and a;’s are model parameters.

In the Bayesian context for clustering the data, a model M; is selected among H different models because
it has the highest posterior probability given the data. The posterior probability is defined by,

f(z | My)P(M;)
Y f(z | M)P(M,)

For the model M;, f(z | M;) is the integrated (marginal) likelihood and P(M;) is the prior probability.
The integrated likekihood can be approximated by BIC under regularity conditions. But When it comes
to estimating the number of components in a mixture model or in other words identifying the number of
relevant clusters, the regularity conditions for BIC no longer holds ([5],[7]). The reason for this is that, if
the mixture model(K) has more components than the true model(K'), then some of the mixing proportions
(K — K') will be close to zero as the sample size increases and the corresponding estimated proportions will
be on the boundary of the parameter space [1].

P(M; | z) =

Mixture model can also be expressed in terms of incomplete data structure [3], where the complete data
¥y = (y1,-,Yn) = ((1,21), -y (T, 2n)), 2 = (21, ..., 2n) represents the missing data. For a better clustering
structure of the data instead of integrated likelihood, the integrated completed likelihood (which includes
the missing data) has been proposed in ([1],[2]).

(X, Z|m,k) = /f(X,Z | m, k,0)m(60 | m, k)do
This is approximated by a modified BIC approximation, referred to as ICL criterion.

ICL(m, k) = maxlog f (z, | m, k,0) - % log

where 6 is m.l. estimate of 6 (mixture vector parameter) obtained by EM algorithm, the missing data Z
is replaced by maximum a posteriori (MAP) operator from 6 and Vm,k is the number of free parameters in
the model m with k components. For each situation, the number of times EM algorithm is initiated with
random centers, depends on the features of the data to be classified, this number increases with sample size
and space dimension [1]. In each situation, the solution providing the largest observed likelihood is selected

[2]-

It should be noted that by isolating the contributions of missing data Z to the f(X,Z | m,k) (the
intigrated completed likelihood),the problem of regularity conditions has been avoided in ICL criterion.

The only difference between ICL and BIC is the penalty factor - substraction of the estimated mean
entropy from the log-likelihood. Mean entropy is a measure of the ability of the k-component mixture model
to provide a relevant partition of data [3]. In other words, ICL penalizes for the number of parameters in
the model (in other words model compexity) and thus ensuring that data is partitioned with the greatest
evidence.



3. Discussion

In [2] the authors compared the results for five experiments, obtained using both BIC and ICL criterions.
Two of these experiments were Monte Carlo experiments with simulated data and others were real data sets.
For each experiment, maximum likelihood estimate of parameter vector was obtained via EM algorithm. To
obtain sensible maxima, for each case EM algorithm was initiated 20 times with random centers [2]. The
model providing the largest observed likelihood was selected.

The first experiment used simulated two types of three-component Gaussian mixtures. The mixtures
only differ by the second component of the varaince matrix. Fifty samples were generated for each type of
simulated data. In this experiment alltogether 28 models were considered with number of clusters one to
seven. For the first type of three-component Gaussian mixture, components were well separated. Both ICL
and BIC selected the right model most of the times (BIC 92 percent and ICL 88 percent of the simulations).

For the second type of three-component Gaussian mixtures, first two components were overlapping. In this
situation BIC outperformed ICL. BIC selected the right model in 92 percent of the simulations, where as
ICL selected the right model only 8 percent of the cases.

These two results indicate for a Gaussian mixture, performance of BIC is as good as ICL and in some cases
better than ICL.

The second experiment considered in [2], is a simulated mixture of uniform and gaussian clusters.
This experiment considered only one model with number of clusters varying from one to five. In this case
performance of BIC is inferior than that of ICL. The ICL criterion chose the right model in 100 percent and
BIC chose the right model in 60 percent of the simulations.

Experiments with three real data sets were also conducted [2]. In the case of Old Faithful Geyser data,
28 models with cluster numbers one to six were considered. For almost every model, ICL selected a cluster
size of two and BIC selected a cluster size of 3. ICL result clearly distinguished two clusters where as BIC
result pointed to model deviations from normality.

In the French Departments data, 28 models with cluster number from one to five were considered. Both
criterias favored the same model and results for cluster number identification were comparable.In this case
performances of BIC and ICL were equivalent.

In the Acoustic Emission Control data, Gaussian mixture model (with equal proportions and different
volumes) and a uniform distribution was considered for the modeling purpose of the data. Cluster size varied
from two to twenty. In this case BIC overestimated the number of clusters. ICL identified ten clusters with
strong evidence.

The results obtained in [2] suggests that whenever the true model is Gaussian, performance by BIC
is very close to that of ICL. But if the true model is not Gaussian, BIC tends to overestimate. These
experiments support the contentions of [2], that is a modification of BIC criterion - which accounts for
model complexity is required.

4. Summary

Finite mixtures can be employed as a powerful modelling way in cluster analysis ([4],[5]). In this context,
selecting a relevant form of model and assessing a sensible number of clusters is of utmost importance. The
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results presented in [2] is very impressive. It appears that if the mixture data is not Gausssian, ICL performs
better than the BIC criterion in terms of identifying the correct model and also choosing the correct number
of clusters. But if the mixture comes from a Gaussian distribution, the performance of BIC is equivalent to
that of ICL. The difference between ICL and BIC is the entropy term - the additional criteria included in
ICL, which ensures well-separated clusters.
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