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ABSTRACT
A new method for speech signal reconstruction is proposed by

performing a nonlinear Kernel Principal Component Analysis

(KPCA). By the use of kernel functions, one can efficiently

compute principal components in high-dimensional feature

spaces, and reconstruct vectors mapping from input space by

those dominant principal components. As the reconstructed

vectors is expressed in high dimensional feature space and they

could not exist pre-image in input space. For finding pre-image,

we use iteration method to approximate the pre-image. The

experimental results using KPCA in data reconstruction and de-

noising in speech signal show that it had many potential

advantages comparing with PCA.

1.PRINCIPLE
Principal Component Analysis (PCA) is an orthogonal basis

transformation. The new basis is founded by diagonalizing the

centered covariance matrix of a data set, The coordinates  in the

Eigenvector basis are called principal components. The size of

an Eigenvalue corresponding to an Eigenvector v of covariance

matrix equals the amount of variance in the direction of v.

Furthermore, the directions of the first n Eigenvectors

corresponding to the biggest n Eigenvalues cover as much

variance as possible by n orthogonal directions. In many

applications they contain the most interesting information: for

instance, in data compression, where we project onto the

directions with biggest variance to retain as much information as

possible, or in de-noising, where we deliberately drop directions

with small variance.

Assume that our data is mapped into feature space by nonlinear

map
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And do PCA for the covariance matrix.
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We have to find Eigenvalues  and Eigenvectors satisfying

VC�V = . (3)

This implies that we may consider the equivalent system.
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By defining >ΦΦ=< )(),( ji xxijK , we get the

expression
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The same as PCA does. We solve the Eigenvalue problem for

nonzero Eigenvalues. Clearly, all solutions belonging to nonzero

Eigenvalues  is principal component in high dimensional feature

space. If n is large enough to take into account all directions

belonging to Eigenvectors with non-zero Eigenvalue, we can

reconstruct signal in feature space rather than in input space.

For getting the project of )(xΦ  on the space F which are



spanned by vectors n21 vvv ,,, Λ , we can define following

project operator Pn, representing the summary of project of

)(xΦ  on the Eigenvectors corresponding to the first n

Eigenvalues .
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If the first n eigenvalues is big enough, the following equation is

proved to be true.
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For we can not know if the pre-image of )(xΦnP  existed, we

try to approximate it by minimizing
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If we restrict our attention to kernels of the form
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We can devise an iteration scheme for z by
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To test the feasibility of the algorithm, we run several toy and

real world experiments. They were performed using Gaussian

kernels of the form (9). We mainly focused on the application of

de-noising in speech signal, which differs from reconstruction

by the fact that we are allowed to make use of the original test

data as starting points in the iteration. Using different principal

components, we get reconstructed signal and most of noise been

removed.

2.EXPERIMENT AND APPLICATION

Figure 1: sin signal (From top to bottom in turn is: sin signal,

sin signal with noise, white noise)

Figure 2: result of de-noising sin signal with different principle

components  (In each sub-figure, the upper plot is signal

reconstructed by principal components)

Figure 2 illustrate four of result after reconstruction based on

KPCA. The curve in top left corner is based on one principle

component; the curve in top right corner is based on three



principle components; the curve in third bottom left is based on

five principle components; the curve in bottom right is based on

seven principle components. You can see that the quality of

signal is better with the increasing of number of principal

components.

Figure 3: result of de-noising speech signal with different

principal components  (From top to bottom in turn is: initial

speech signal, speech signal with noise, speech signal after de-

noising, signal cut from speech signal)

   

Figure 3 illustrate four of result after reconstruction based on

KPCA. The curve in top left corner is based on ten principle

component; The curve in top right corner is based on eight

principle components; The curve in bottom left corner is based

on five principle components; The curve in bottom right corner

is based on three principle components. You can also see that the

quality of signal is better with the increasing of number of

principal components.

3.CONCLUSION
The algorithm can be applied to both reconstruction and de-

noising. In the former case, results were comparable to linear

PCA, while in the latter case we obtained significantly better

results. Our interpretation of this finding is as  follows. Linear

PCA can extract at most N components, where N is the

dimensionality of the data. Being a basis transform, all N

components together fully describe the data. If the data are noisy,

this implies that a certain fraction of the components will be

devoted to the extraction of noise. KPCA, on the other hand,

allows the extraction of up to L features, where L is the number

of training examples. Accordingly, KPCA can provide a larger

number of features carrying information about the structure in

the data. In addition, if the structure to be extracted is nonlinear,

then linear PCA must necessarily fail.

4.REFERENCE

1. V. Vapnik. 1995. The Nature of Statistical Learning

Theory. Springer-Verlag,New York.

2. Bernhard Scholkopf, Alex Smola, Klaus-Robert

Muller. Nonlinear Component Analysis as a Kernel Eignenvalue

Problem,Neural Computation,Vol.10,Issue 5,pp.1299-1319, The

Mit Press ,1998.

3. Bernhard Scholkopf, Alex Smola, Klaus-Robert

Muller. Kernel Principal Component Analysis, Technical Report,

Max-Planck-Institut f. biol. Kybernetik,1998. GMD FIRST,

Rudower Chaussee 5, 12489 Berlin, Germany.

4. Phil Knirsch, Alex Smola , and Chris Burges , Fast

Approximation of Support Vector Kernel Expansions, and an

Interpretation of Clustering as Approximation in Feature

Spaces,Technical Report,GMD FIRST, Rudower Chaussee 5,

12489 Berlin, Bell Labs, Lucent Technologies, Crawfords

Corner Rd., Holmdel NJ 07733, USA .


